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ABSTRACT

We study the recursive robust principal components’ aig(yxCA)
problem. Here, “robust” refers to robustness to both inddpat and
correlated sparse outliers. If the outlier is the signairtérest, this
problem can be interpreted as one of recursively recovexitime
sequence of sparse vectofs, in the presence of large but struc-
tured noise,L;: the noise needs to lie in a “slowly changing” low
dimensional subspace. We study a novel solution called Riveu
Projected CS (ReProCS). Under mild assumptions, we shoty th
with high probability (w.h.p.), at all times, ReProCS cametky re-
cover the support set ¢f;; and the reconstruction errors of bath
and L. are upper bounded by a time-invariant and small value.

Index Terms— robust PCA, compressive sensing

1. INTRODUCTION

This work studies the recursive robust principal composieartaly-
sis (PCA) problem. A key application where this occurs isioeo
analysis where the goal is to separate a slowly changinggoackd
from moving foreground objects [1, 2]. If we stack each fraase
a column vector, the background is well modeled as lying iova |
dimensional subspace that may gradually change over tirhide w
the moving foreground objects constitute the sparse ositj& 2]
which change in a correlated fashion over time. Other apfitios
include sensor networks based detection and tracking afratai
events such as forest fires or oil spills; or online detectibbrain
activation patterns from functional MRI (fMRI) sequencése(“ac-
tive” part of the brain can be interpreted as a correlatedsspaut-
lier). In many of these applications, an online solutionésidable.
In this work, we focus on this case, i.e. @mtursive robust PCA that
is robust to both independent and correlated sparse ostlier

The moving objects or the brain active regions or the oil sgil
gion may be “outliers” for the PCA problem, but in most caskese
are actually the signals-of-interest whereas the backgtémage is
the noise. Also, all the above signals-of-interest aresspgectors
that change in a correlated fashion over time. Thus, thislpro can
also be interpreted as one of recursively recovering a teneence
of correlated sparse signals,, from measurementd/; := S; + L.
that are corrupted by (potentially) large magnitude butséeand
structured noisel;. The structure that we require is that be
dense and lie in a low dimensional subspace that is eithed fixe
changes “slowly enough” in the sense quantified in Sec 2.1.

Related Work.  There has been a large amount of work on
robust PCA, e.g.
e.g. [9, 10, 11]. These works either assume that the locaidn
the missing/corruped data points are assumed known (nccipr
cal assumption); or throw out the entire outlier vector [AtBis is a
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[1, 2, 4,5, 6, 7, 8], and recursive robust PCAb

problem if most frames contain outliers) or cannot deteclbmag-
nitude outliers [10, 1, 11]5;, (this is needed whe#: is the signal

of interest). Moreover, except [7, 8], the others do not camita
any performance guarantees either. In recent work [2, 4¢vaei-
egant solution to robust PCA called Principal Componentssiit
(PCP) has been proposed, that removes the above limitatiors
defines batch robust PCA as a problem of separating a low rank m
trix, £¢ := [L1, ..., L¢], from a sparse matrd§; := [S1,..., S,
using the measurement matrif{, := [M1,..., M = L+ + S¢. It

4vas shown in [2] that one can recov@r andS; exactly by solving

rgi§1||£|\* + A||S]|1 subjectto L + S = M, provided that (a); is

dense (its left and right singular vectors satisfy certainditions);
(b) any element of the matri&; is nonzero w.p.g, and zero w.p.

1 — p, independent of all others (in particular, this means that t
support sets of the differest,’s are independent over time); and (c)
the rank of£; and the support size &, are small enough. Here
||A]|« is the nuclear norm oft (sum of singular values ofl) while
[|A||1 is the¢, norm of A seen as a long vector.

In many practical applications, e.g. video analysis, itais fo
assume that the background changes are dense/j.és dense).
However, the assumption that the foreground support iiecéent
over time is not a valid one. Foreground objects typicallywenmn
a correlated fashion, and may even not move for a few framieis. T
often results inS; being sparse as well as low rank. In the case
whereL; is low rank and dense, b&; is both sparse and low rank,
in general, PCP [2, 4] will not work. Without any extra infaation,
it is also not clear how else to separadeand £;. But suppose
that an initial short sequence &f's is available. For example, in
the video application, it is often realistic to assume thatratial
background-only training sequence is available. The ipre#, can
we use this to do anything better?

Contribution.  In [12, 13], we first studied this problem and
proposed a novel solution called Recursive Projected CBI($tES).
In this work we develop a modification of the algorithm of [1B&t
can be analyzed more easily. The key contribution of thigi®as
follows. Under mild assumptions, we show that, w.h.p, R€&can
exactly recover the support set.gf at all times; and the reconstruc-
tion errors of bothS; and L are upper bounded by a time invariant
and small value at all times. K. is the signal of interest, then Re-
ProCS is a solution to recursive robust PCA in the presenspake
and possibly correlated outliers. To the best of our knogdedhis
is the first rigorous analysis of any recursive (online) iRICA ap-
roach and definitely the first to study recursive (onlinéusi PCA
with correlated outliers. Ours is also among the first fewksdhat
studies recursive sparse recovery in (potentially) largestsuctured
noise: the noise needs to lie in a “slowly changing” low disienal
subspace as defined in Sec 2.1. Works that study a relatetkprob
of sparse signal recovery from large but sparse noise éo)ili-
clude [3, 14, 15]. Since these algorithms are designed fangles



signal (without using past or future information), thesae a#so be
interpreted as solutions for recursive sparse recovem fewge but
sparse noise.

Notation. For a setl" C {1,2,...n}, we use|T| to denote
its cardinality, i.e., the number of elementsiin For a vectow, v;
denotes theth entry ofv andvr denotes a vector consisting of the
entries ofv indexed byI". We usel|v||, to denote thé,, norm ofw.

For a matrixB, B’ denotes its transpose, al®l its Moore-
Penroe pseudo-inverse. We US8||2 := maxgo || Bzl||2/||z||2 to
denote the induced 2-norm of the matrix. For a Hermitian ixatr

B, we use the notatio3 FYP UAU’ to denote the eigenvalue
decomposition ofB. HereU is an orthonormal matrix and is a
diagonal matrix with entries arranged in non-increasindear We
use/ to denote an identity matrix. For an index §éand a matrix
B, Br is the sub-matrix o8 containing columns with indices in the

for all . (c) Its covariance matrid; := Covia:] = E(a:ay)
is diagonal withA™ := ming Amin(A¢) > 0 and A"
max; Amax(A¢) < oo. Thus the condition number of any
A is bounded byf := *+

Moreover, P; anda; change slowly as quantified in Sec 2.1. Also,
the L;’s, and hence their subspace basis matribgsare dense,
i.e. the denseness coefficiett(P;), which is defined in Sec 2.2,
is small for all;.

2.1. Slow subspace change

By slow subspace change we mean all the following. Firstdhe
lay between consecutive subspace change times,— t;, is large
enough.

Second, the projection of.; along the newly added direc-

tions, a¢,new, IS initially small, i.e. max;; <i<t;+a ||atnenl|oo <

setT'. For atall matrixP, spar{ P) denotes the subspace spanned DY~ new, with Anew < Y» aNdynew < Smin, but can increase gradually.

the column vectors oP. The notatiorf.] denotes an empty matrix.
Definition 1 We refer to a matrix” as abasis matrixf P'P = I.

The s-restricted isometry constant (RIC)6], Js, forann x m
matrix ¥ is the smallest real number satisfyifig — J,)||z||3 <
1 Trz||3 < (1+65)||z|3 forall setsT C {1,2,...n} with |T| < s
and all real vectors of length|T'|.

2. PROBLEM FORMULATION

The measurement vector at timelM;, is ann dimensional vector
which can be decomposed as

My =L+ St ()
Here S, is a sparse vector with support set size at nsoshd min-
imum magnitude of nonzero values at le&sti,. L: is a dense

but low dimensional vector that satisfies the model giverowel

We are given an accurate estimate of the subspace in which trﬁf

initial twain L:'s lie, i.e. we are given a basis matri so that
|(I—PoP§) Py |2 is small. HereP, is a basis matrix for spdis,;,),
i.e. spaiiPy) = span(Ls,,,). The goal is

1. to estimate botl$; and L. at each timé& > tyain, and
2. to estimate spdi,) every so often.
LetT; := +)i # 0} denote the support

{i: (S

Notation for S;.
of S;. Define

Smin := minmin |(St):], ands := max |Ty|
t €Ty t

Model on L;.
1.

The L,’s satisfy the following model.

L. lies in a low dimensional subspace that changes every-s
often. Lett; denote the change times. Thén = Py)a
with P(t) =P for all ti <t <tjy1,7=012---J,
i.e. there is a maximum aof subspace change times. We can
definet;+1 = co. HereP; is ann x r; basis matrix with
r; LKn andr]- < (t]'+1 — tj).

. At the change timeg,;, P; changes a$; = [Pj—1 P;j nev
whereP; newiS an X ¢ new ba3|s matrix withP; nePj—1 = 0.
Thusr; = rj—1 + ¢jnew

. There exists a constant,, such thal < ¢;new < Cma.

. The projection vectorg; := P’ L, is a random variable
(r.v.) with the following properties. (aj.’s are mutually in-

dependent over time, (b) It is a zero mean bounded r.v,, i.e.
E(a¢) = 0 and there exists a constant s.t. ||at|loc < 7«

(Peflnltlon 3 Define the time interval; ,, := [t; + (k —

We model this as follows. Split the intervtl;, ¢;.1 —
length periods. We assume that

1] into «

max Hat,newHoo < Ynewk = min(vk_l’)’new, ’Y*)

max
Jooteftj+(k—1)a,t;+ka—1]
for av > 1 but not too large. This assumption is verified for real
video data in [17, Sec X-A].
Third, the number of newly added directions is small,
Cjnew < Cma K To. This is also verified in [17, Sec X-A].

i.e.

2.2. Measuring denseness of a matrix and its relation with RT

For a talln x r matrix, B, or for an x 1 vector, B, we define the
the denseness coefficient as follows:

12" B||2

ks(B) := max -———.
I1Bll2

IT|<s

where||.||2 is the matrix or vector 2-norm respectively. As we ex-
ain in Sec 5,x,(B) is related to the denseness assumptions re-
quired by PCP [2].

The lemma below relates the denseness coefficient of a basis
matrix P to the RIC of] — PP’. The proof is in [17, Appendix].

Lemma 2 For ann x r basis matrixP (i.e P satisfyingP’' P = I),

6s(I — PP') = Kk2(P).
3. RECURSIVE PROJECTED CS (REPROCS)

We summarize the Recursive Projected CS (ReProCS) algoiith
Algorithm 1. It uses the following definition.

Da,t; +
— 1] fork = 1 K ande K41 = [tj —|—KO¢ tj+1 — 1] Here,
K is the algorlthm parameter in Algorithm 1.

The key idea of ReProCS is as follows. Assume that the cur-
rent basis matrix’;y has been accurately predicted using past esti-

mates ofL;, i.e. we haveP_1y with (I — P_1)P,_1)) Pyl
small. We project\; into the space perpendicular th,l) to get
the projected measurement vectar := @) M; where @,
I — Pu_1 P}, (step 1a). Since the x n projection matrix,
&y has rankn — 7. wherer, = rank(P(t_l)), thereforey; has
only n — r, “effective” measurements even though its length is

li.e. somer. entries ofy; are linear combinations of the other— .
entries



Algorithm 1 Recursive Projected CS (ReProCS)

Parameters: algorithm parameters;, w, o, K, model parameters:
t;, ro, ¢jnew (St @s in Theorem 4 or as in [17, Sec X-B] when the
model is not known)

Input: My, Output: St, Le, Py

Initialization: Given training sequeng¢é., Lo, - - - , Ly,,,,], €stimate
Py by computing an EVD ag— >0 L, L’ EYP EAE’ and
then retaining the eigenvectors with thelargest eigenvalues, i.e.,
Py +— (E){LQ,M ro}-

Let Py « Po. Letj < 1, k < 1. FOrt > tyain, do the following:

1. Estimatel; and.S; via Projected CS:

(a) Nullify mostofL;: computed ) « I—Py_1) P}, 4,
computey: < P, M

(b) Sparse Recovery: compu@,cs as the solution of
ming [|zf|1 s.t. lye — Pyzll2 <€

(c) Support Estimate: compu® = {i : |(Scs)i| > w}
(d) LS Estimate of S;: 3
((@e)7,) e, (St)pe =0
2. EstimateL;: L; = M; — S;.
3. UpdateP,, by Projection PCA
@ Ift=t; +ka—1,

compute (S¢)y,

i. compute 3 Lier, (I -
PPkl — BBl PP
[Pj new,k Pj new,k J_} |:Ak 0 ] |: A/]{"nEW’k }

e e 0 Ak,i Pj,new,k,L

whereAy is of sizecj new X ¢} new
ii. setPy) < [Pj—1 Pjnews]; incrementc < k+1.
Else
i. setPy) + Py_1y.
(b) Ift = t; + Ka — 1, then setPj < [Pj_1 Pjnewx]-
Incrementj < j + 1. Resett < 1.

4. Increment < t + 1 and go to step 1.

n. Notice thaty, can be rewritten ag: = &®)S; + 8: where
Bt = ®(;)Le. Since||(I — P—1)P,_1))Pyll2 is small, the pro-
jection nullifies most of the contribution df; and so the projected
noise3; is small. Recovering the dimensional sparse vectéh

from y, now becomes a traditional sparse recovery or CS problem

in small noise [18, 19, 20, 21] (step 1b). H), and hence its esti-
mate,P(t,l), is dense enough, then, by Lemma 2, the RI@gf

is small enough. By [21, Thm 1], this ensures tlSatcan be ac-
curately recovered frong:. By thresholding on the recoveresi,
one gets an estimate of its support (step 1c). By computirggst |
squares (LS) estimate ¢f, on the estimated support and setting it
to zero everywhere else (step 1d), we can get a more accurate fi
estimateS;, as first suggested in [22]. Thi is used to estimat&,
asL, = M, — S (step 2). The sparse recovery erir;= S; — S;.
Sincel; = M, — S, (step 2)¢; also satisfies; = L; — L;. Thus,

a smalle; means thal; is also recovered accurately. The estimated
Ly’s are used to obtain new estimatesR)few every o frames for

a total of K« frames via a modification of the standard PCA proce-
dure, which we call projection PCA (step 3).

The ReProCS idea is also somewhat related to that of [16, 23,
24] in that all of these also try to cancel the “low rank” paytgro-
jecting the original data vector into the perpendicularcgpaf the
tall matrix that spans the “low rank” part. However the bidfet
ence is that in all these works, this matrixkisown In our problem
this matrix P(;y is unknown and can change with time.

4. PERFORMANCE GUARANTEES

We state the main result here first and then discuss it. Fqurthe,
see [17, Sections V, VI, VII].

Theorem 4 Consider Algorithm 1. Let := ¢z andr = ro +

(J — 1)c. Assume thak; obeys the model given in Sec. 2 and there
are a total ofJ change times. Assume also that the initial subspace
estimate is accurate enough, i.8(I — Py Py)Po|| < 7o, fora(

that satisfies

+

wheref := i—7

1.5 x 1074
r2f
If the following conditions hold:

1. the algorithm parameters are set ds= &0(¢), 7p¢ <
w < Smin — 7§, K = K(¢), @ > aai((), Where

£0(¢), p, K(¢), avadd(¢) are defined in Definition 5.

1
)

s (U
¢ < min( 2

)

2. Pj—l‘ Pj,new, Dj,new,k = (I—I:)j—lpj(71_Pj,nevmkpj{,new,k)Pj,new
and Qjnewr = (I — PjnewPjnew )Pjnewr have dense
enough columns, i.e.

R2s (PJ71) < 0.3, max H2S(Pj’new) < 0.15,
J
max max K2s(Djnewr) < 0.15,
j 0<k<K T
max max Ao (Qjnewr) < 0.15
with Pj newo = [.] (empty matrix).
3. for a given value ofSwin, the subspace change is slow
enough, i.e.
maX(tj+1 — tj) > Ka,
J
oo < min(1.2571 .
mjaxtj«l»(kflr)rzlxagi<tj+kaHat’neWH < min( Ynews V)
14p0(¢) < Smin,
4. the condition number of the covariance matridxa@few aver-

aged ovett € Z; i, is bounded, i.e.
gik < V2
whereg; . is defined in Definition 5,

then, with probability at leasfl — n~'°), the following hold:

1. atalltimest, 7, = T; and||et|2 = || Li — Li|l2 = ||S: —
Stll2 < 0.18v/Cynew + 1.2¢/C(+/7 + 0.064/<).

the subspace error $E := ||(] — P(t)P(t))P<t) ||2 satisfies
SE, < (ro+ (j —1)e)¢ + 0.4cC + 0.6 if t € T4,
B = (’I‘o +]C)C if te Ij_’KﬂH

< J1072VC+ 0.6°1 if t €I,
- 1072\/6 if te I',K_t,_l



3. e follows a trend similar to that of Sf at various times (the
bounds are available in [17, Theorem ?].

Proof: See [17, Sections V, VI, VII].
Definition 5 We define here the parameters used in Theorem 4.
1. DefineK(¢) := [ w

2. Definego(¢) = vernew+ VC(VT + /)
3. Definep := max;{r1(Sscs — S:)}. Notice thatp < 1.
4. LetK = K(¢). Define

log(0.6¢¢)
log 0.6

4608(log 6K J + 11logn)
¢2(A7)?

max(min(l'24K7§eW7 ’yf)v

Qadd= |

16
= 4(0.18673w + 0.00347new + 2.3)%)].

In words, aiaqq is the smallest value of the number of data

The first key difference between our result and that of PCP [2]
is as follows. The result for PCP [2] assumes that any elewfahe
n X t matrixS; is nonzero w.po, and zero w.pl — p, independent
of all others (in particular, this means that the suppor séthe dif-
ferentS;’s are independent over time). This ensures that w$is
sparse but full rank and hence ensures that it can be segdirane
L+ which is low rank but dense. As explained earlier, the assump
tion of independent support sets®fis not valid for real video data
where the foreground objects usually move in a highly catesl
fashion over time. On the other hand, our result for RePro@sd
not put any such assumption on the support sets ofSife The
reason it can do this is because it assumes accurate knadétine
subspace spanned by the first few columngoénd it assumes slow
subspace change (verified in [17, Sec X-A]), both of whichpaee-
tically valid assumptions. However, ReProCS does needeteiss
of Dj new, Whose columns span the currently unestimated part of
spar{ Pj new). In simulations, we observe that this reduces when the
support ofS; changes very infrequently.

Next let us compare the denseness assumptions. Llet
UXV' beits SVD. Then, fot ¢ [t]', tjt1 — 1], U= [Pj—l, Pj,new]

points,c, needed for one projection PCA step to ensure thatandV = [a1,az ... a:)’S ™', PCP [2] assumes densenesg&/aind

Theorem 4 holds w.p. at leagt — n™'?).
. Define the condition number of Gay,new) averaged ovet €
. +
Tk asgjr = —i?’”ew"“_ where

j,new, k

Aj,new,k"" = Amax(é’ Ztezj)k(/\t)new), and
)\j,new,k_ = Amin(é Ztte‘k(Ai)"eW)'

This result says the following. Assume that the initial sdrse
error is small enough. If (2) the algorithm parameters areero-
priately; (b) the matrices defining the previous subspdeenewly
added subspace, and the currently unestimated part of thiy ne
added subspace are dense enough; (c) the subspace chaloge is
enough; and (d) the condition number of the average cowseiara-

trix of a¢ newiS sSmall enough, then, w.h.p., we will get exact support

recovery at all times. Moreover, the sparse recovery erithralv
ways be bounded b§.18+/cynew plus a constant timeg/C. Since
¢ is very small,ynew << Smin, andc is also small, the normalized
reconstruction error for recovering will be small at all times.

In the second conclusion, we bound the subspace estimation

ror, SE,. When a subspace change occurs, this error is initiaII)F
bounded by one. The above result shows that, w.h.p., with eacd

projection PCA step, this error decays exponentially atid felow
0.014/¢ within K projection PCA steps. The third conclusion shows
that, with each projection PCA step, w.h.p., the sparsevexgeerror
as well as the error in recoverirg also decay in a similar fashion.
Notice thatK = K(¢) is larger if ¢ is smaller. Also,cadd is
inversely proportional t@. Thus, if we want to achieve a smaller
lowest error level(, we need to compute projection PCA over larger
durationse and we need more number of projection PCA st&ps

5. DISCUSSION AND COMPARISON WITH PCP RESULT
We provide a qualitative comparison with [2]. A direct comipa
son is not possible since the proof techniques used are ifégyedt
and since we solve a recursive version of the problem whelRC#s
solves a batch one. Moreover, PCP provides guarantees dot ex

recovery ofS; andL:. In our result, we obtain guarantees for exact

support recovery of thé,’s (and hence ofS;) and bounded error
recovery of its nonzero values and 6f. Also, PCP assumes no
model knowledge, whereas our algorithm does assume knge/led
of model parameters. Of course, in [17, Sec X-B], we explaw h
to set the parameters when the model is not known.

of V: it requiresk1(U) < /ur/n andki(V) < /ur/n for a
constany > 1. Moreover, it also requirefU V" ||lmax < /fr/n.
Here|| B|max := max; ; [(B);,;|. On the other hand, our denseness
assumptions are oft;_1 and P; new Which are sub-matrices df.
We do not need densenessiofind we do not bounfU V" || max-
However, some additional assumptions that we need are (a)
denseness @D; newr and ofQ; newr; (D) the independence af’s
over time and (c) condition number of the average covariamaix
of a¢,new, iS NOt tOO large. (c) is an assumption made for simplicity.
As explained in [25], this can be removed and replaced if #hely
added eigenvalues can be separated into a few clusterswéidich
mall condition number. (b) is assumed so that we can usedté&xm
oeffding inequality [26, Theorem 1.3] to obtain high prbbigy
bounds on the terms in the subspace error bound. In expggmen
we are able to also deal with correlateds. As explained in [17],
it should be possible to replace it by a milder assumptiomsgter
(@). Our proof only needgIr,” Dj newk||2/ || D new |2 to be small
at every projection PCA time. We attempted to verify thisimda-

eIions done with a densB; and P; new. Except for the case of exactly

onstant support of;, in all other cases (including the case of very
radual support change), this ratio was small for most ptige
PCA times. We also saw that even if at a few projection PCA gime
this ratio was close to one, that just meant that, at thosestirte
subspace error remained roughly equal to that at the previoe.

As aresult, alargekK was required for the subspace error to become
small enough. It did not mean that the algorithm became blesté#t
should be possible to use a similar idea to modify our resutell.

An analogous discussion applies@) new,x-

Extensive experimental comparisons with other works are
available at http://www.ece.iastate.edu/ ~chenlu/
ReProCS/ReProCS.htm and will be discussed in forthcoming
work.

6. CONCLUSIONS AND FUTURE WORK

We studied the recursive (online) robust PCA problem, witiah
also be interpreted as a problem of recursive sparse rgcovéne
presence of large but structured noise. Under mild assongtive
showed that, w.h.p., ReProCS can exactly recover the stgpioof
S; at all times; and the reconstruction errors of bSthand L; are
upper bounded by a time-invariant and small value. In orgaiark
[25], we are developing and analyzing ReProCS with deletion
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