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ABSTRACT

In this paper, we propose an iterative algorithm based on hard thresh-
olding for demixing a pair of signals from nonlinear observations of
their superposition. We focus on the under-determined case where
the number of available observations is far less than the ambient di-
mension of the signals. We derive nearly-tight upper bounds on the
sample complexity of the algorithm to achieve stable recovery of the
component signals. Moreover, we show that the algorithm enjoys
a linear convergence rate. We provide a range of simulations to il-
lustrate the performance of the algorithm both on synthetic and real
data.

Index Terms— Demixing, sparse recovery, nonlinear measure-
ments, linear convergence, incoherence.

1. INTRODUCTION

The problem of demixing a pair of signals from their superposition
signal impacts several applications in signal and image processing,
statistics, and data analysis [1, 2]. In the simplest setting, consider a
length-n signal x that can be expressed as x = Φw + Ψz, where Φ
and Ψ are incoherent bases in Rn, and w, z ∈ Rn are the basis coef-
ficients. The goal of demixing is to reliably recover the constituent
signals, w and z, given the superposition signal x. It is clear that
even in this simple case, the demixing problem is highly ill-posed
since the number of unknowns (2n) is greater than the number of
equations (n). To enable reliable recovery of the constituent signals,
one has to assume some notion of incoherence between the bases of
constituent signals, Φ and Ψ [3, 4, 5].

Now, consider the more challenging case where instead of the
superposition signal x, we only have access to linear measurements
y = Ax, where A ∈ Rm×n denotes the measurement operator
and where m � n. In this scenario, the demixing problem is fur-
ther confounded by the fact that A possesses a nontrivial null space.
Therefore, some additional structural assumptions on the constituent
signals are necessary. Under-determined problems of this kind have
recently received significant attention in signal processing, machine
learning, and high-dimensional statistics [6, 7, 8].

In this paper, we address an even more challenging question in
the demixing context. Mathematically, we consider a nonlinear sig-
nal observation model, stated as follows:

yi = g(aTi (Φw + Ψz)) + ei, i = 1 . . .m. (1.1)

Here, the superposition signal is given by x = Φw + Ψz, and each
observation is generated by the composition of a linear functional of
the signal 〈ai, x〉 with a nonlinear function g. Further, we assume
that the observation yi is corrupted by subgaussian additive noise.
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Here, g represents a nonlinear, smooth, and strictly monotonic func-
tion (sometimes called a link, or transfer function), and ai denotes
the ith row of a linear measurement matrix A. Particularly, we are
interested in recovering constituent signals which are s-sparse (i.e.,
they do not have more than s nonzero entries) from m nonlinear
observations, when m is much smaller than the ambient dimension
n.

In this paper, we introduce a novel approach for the demixing
problem under the observation model (1.1). Our approach is based
on two key ideas. First, we formulate our nonlinear demixing prob-
lem in terms of an optimization problem with respect to a special
loss function that depends on the nonlinearity g. Second, for solv-
ing the proposed optimization problem, we provide an iterative al-
gorithm based on hard thresholding for demixing of the constituent
signals in (1.1) given the nonlinear observations y. The algorithm
is assumed to possess oracle knowledge of the measurement matrix
A, bases Φ and Ψ, and the link function g. In contrast with previ-
ous methods for nonlinear demixing [4, 9], we show that leveraging
prior knowledge of the link function g can significantly improve the
recovery performance. In our setup, we make the key assumption
that the measurement vectors ai are independent, isotropic random
vectors that are incoherent with the bases Φ and Ψ. (See (3.6) for
a precise definition of incoherence.) This assumption is more gen-
eral than the i.i.d. Gaussian assumption on the measurement vectors
made in [4, 9], and is applicable to a wider range of measurement
models.

We support our algorithm with a rigorous analysis. Our anal-
ysis reveals upper bounds on the sample complexity of demixing
with nonlinear observations (here, sample complexity denotes the
required number of observations for reliably recovering the signal
coefficientsw and z). More precisely, we show that the sample com-
plexity is upper-bounded by m = O(s log2 n log2 s log(s logn)),
provided that the bases are sufficiently incoherent with respect to
each other. This matches the sample complexity of recovering s-
sparse signals from linear observations up to polylogarithmic factors.
Moreover, we show that the algorithm enjoys a linear convergence
rate to the desired solution.

Furthermore, we provide a range of simulations to show the
superior performance of our algorithm compared to previous algo-
rithms [4, 9] both on synthetic and real data. Due to page-limit
constraints, we merely state our theoretical claims and a few select
experiments, and refer the reader to the supplementary of this pa-
per [10] for full proofs.

2. RELATED WORK

Demixing problems of various flavors have been long studied in re-
search areas spanning signal processing, statistics, and physics, and
have been the focus of significant research in recent years. For exam-
ple, Morphological Component Analysis (MCA) [11] and separation



of foreground and background in video [12] are two well-known ex-
amples of demixing applications in image processing.

Demixing from linear observations can be considered as a spe-
cial class of linear inverse problems that have risen to the fore in
the last decade, notably for compressive sensing applications [6, 7].
More recently, ideas from compressive sensing have been extended
to inverse problems where the available observations are manifestly
nonlinear. Instances include 1-bit compressive sensing [13, 14],
phase retrieval [15], and nonlinear matrix completion [16, 17]. Sim-
ilar problems have been studied in the statistical learning theory lit-
erature [18, 19, 20].

A natural fusion of the above streams of research is to consider
the problem of signal demixing from nonlinear measurements. The
paper [4] explicitly addresses this problem and introduces a fast,
non-iterative algorithm (called ONESHOT) for recovering a pair of
incoherent signals from a few nonlinear measurements. Their ap-
proach is an extension of a geometric argument proposed in [9]. Al-
though this algorithm is very fast, the sparse components are recov-
ered only up to an arbitrary unknown scale factor for general ran-
dom measurement matrix. This can lead to high estimation errors
in practice, and this can be unsatisfactory in applications. Moreover,
the sample complexity of the algorithm is inversely dependent on the
estimation error.

In this paper, we resolve these issues, and provide an algorithm
with sample complexity that is independent of the estimation error
and that is nearly-optimal. Our method is inspired by a recent line
of efficient, iterative methods for signal estimation in high dimen-
sions [21, 22, 23, 24, 25]. To the best of our knowledge, none of
the above approaches explicitly consider the problem of demixing
from nonlinear observations. Our algorithm (and theoretical analy-
sis) leverages the algebraic structure of the demixing problem, and
highlights the effect of incoherence both between the component
bases, as well as between the measurements and the signal bases.

3. PRELIMINARIES

Throughout this paper, ‖.‖p denotes the `p-norm of a vector in Rn,
and ‖A‖ denotes the spectral norm of the matrixA ∈ Rm×n. Define
the constituent vector, t = [wT zT ]T ∈ R2n. as the vector obtaining
by stacking the coefficient vectors, w, z, of the component signals.
Further, suppose that w and z are s-sparse vectors.

We use the following ideas from random matrix theory:

Definition 3.1. (Subgaussian random variable.) A random variable
X is called subgaussian if it satisfies the following:

E exp

(
cX2

‖X‖2ψ2

)
≤ 2,

where c > 0 is an absolute constant and ‖X‖ψ2 denotes the ψ2-
norm which is defined as follows:

‖X‖ψ2 = sup
p≥1

1
√
p

(E|X|p)
1
p .

Definition 3.2. (Isotropic random vectors.) A random vector v ∈
Rn is said to be isotropic if EvvT = In×n.

Also, we have the following definition from [26]:

Definition 3.3. (RSC/RSS) A function f satisfies Restricted Strong
Convexity/Smoothness (RSC/RSS) if:

m4s ≤ ‖∇2
ξf(t)‖ ≤M4s,

where ξ = supp(t1)∪supp(t2), for all ‖ti‖0 ≤ 2s, wherem4s and
M4s are (respectively) the RSC and RSS constants. Also∇2

ξf(t) de-
notes a 4s×4s sub-matrix of the Hessian matrix∇2f(t) comprised
of row/column indices indexed by ξ.

The underlying assumption in demixing problems of the form
(1.1) is that the constituent bases are sufficiently incoherent as per
the following definition:

Definition 3.4. (ε-incoherence.) The orthonormal bases Φ and Ψ
are said to be ε-incoherent if:

ε = sup
‖u‖0≤s, ‖v‖0≤s
‖u‖2=1, ‖v‖2=1

|〈Φu,Ψv〉|. (3.1)

The parameter ε is related to the more well-known mutual coher-
ence of a matrix. Indeed, if we consider the dictionary Γ = [Φ Ψ],
then the mutual coherence of Γ is given by γ = maxi6=j |(ΓTΓ)ij |,
and one can show that ε ≤ sγ [8].

We now state our measurement model. Consider the nonlinear
observation model as follows:

yi = g(aTi x) + ei, i = 1 . . .m, (3.2)

where x ∈ Rn is the superposition signal, given by x = Φw +
Ψz. Here, matrices Φ,Ψ ∈ Rn×n denote orthonormal bases, and
w, z ∈ Rn denote the component s-sparse signals, and g : R 7→ R
represents a (known) nonlinear, smooth, strictly monotonic function
that we call a link function. We denote Θ(x) =

∫ x
−∞ g(u)du as the

integral of the link function g.
In this model, we assume that the observation yi is corrupted by

a subgaussian additive noise with ‖ei‖ψ2 ≤ τ for i = 1, . . . ,m. We
also assume that the additive noise has zero mean when conditioned
on ai, i.e., E (ei|ai) = 0 for i = 1, . . . ,m. Also, we make the
following (crucial) assumption on the link function:

Assumption 3.5. There exist l1, l2 > 0 (resp. l1, l2 < 0) such that
0 < l1 ≤ g′(x) ≤ l2 (resp. l1 ≤ g′(x) ≤ l2 < 0).

In words, the derivative of the link function is strictly bounded
either within a positive interval, or within a negative interval. In this
paper, we focus on the case when 0 < l1 ≤ g′(x) ≤ l2. The
analysis of the complementary case is similar.

In our model, we assume that the vectors ai (i.e., the rows of
the measurement matrix A) are independent isotropic random vec-
tors. In addition to incoherence between the component bases, we
also need a measure of incoherence between the measurement ma-
trix A and the dictionary Γ. The following notion of incoherence
was introduced in the early literature of compressive sensing [27]:

Definition 3.6. (Cross-coherence.) The cross-coherence between
the measurement matrix A and the dictionary Γ = [Φ Ψ] is defined
as follows:

ϑ = max
i,j

aTi Γj
‖ai‖2

, (3.3)

where ai and Γj denote the ith row of the measurement matrixA and
the j th column of the dictionary Γ.

The cross-coherence assumption implies that
∥∥aTi Γξ

∥∥
∞ ≤ ϑ

for i = 1, . . . ,m where Γξ denotes the restriction of the columns of
the dictionary to set ξ ⊂ [2n], with |ξ| ≤ 4s such that 2s columns
are selected from each basis Φ and Ψ.



Algorithm 1 Demixing with Hard Thresholding (DHT)

Inputs: Bases Φ and Ψ, measurement matrix A, link function g,
measurements y, sparsity level s, step size η′.
Outputs: Estimates x̂ = Φŵ + Ψẑ, ŵ, ẑ
Initialization:(
x0, w0, z0

)
← ARBITRARY INITIALIZATION

k ← 0
while k ≤ N do

tk ← [wk; zk] {Forming constituent vector}
tk1 ← 1

m
ΦTAT (g(Axk)− y)

tk2 ← 1
m

ΨTAT (g(Axk)− y)

∇F k ← [tk1 ; tk2 ] {Forming gradient}
t̃k = tk − η′∇F k {Gradient update}
[wk; zk]← P2s

(
t̃k
)
{Projection}

xk ← Φwk + Ψzk {Estimating x̂}
k ← k + 1

end while
Return: (ŵ, ẑ)←

(
wN , zN

)

4. ALGORITHM AND MAIN THEOREM

We now describe our algorithm and main theoretical results. First,
we formulate our demixing problem as the minimization of a special
loss function F (t) : R2n → R,

min
t∈R2n

F (t) =
1

m

m∑
i=1

Θ(aTi Γt)− yiaTi Γt

s. t. ‖t‖0 ≤ 2s.

(4.1)

Observe that the loss function F (t) is not the typical squared-
error function commonly encountered in statistics and signal pro-
cessing applications. In contrast, it heavily depends on the nonlinear
link function g (via its integral Θ). In fact, the objective function
in (4.1) can be considered as the sample version of the problem:

min
t∈R2n

E(Θ(aTΓt)− yaTΓt),

where a, y and Γ satisfies the model (3.2). It is not hard to show
that the solution of this problem satisfies E(yi|ai) = g(aTi Γt)
which coincides with the assumption on the subgaussian noise in
section 3 [20].

The gradient of the loss function is given by:

∇F (t) =
1

m

m∑
i=1

ΓT aig(aTi Γt)− yiΓT ai, (4.2)

=
1

m
ΓTAT (g(AΓt)− y).

We now propose an iterative algorithm for solving (4.1) that
we call it DEMIXING WITH HARD THRESHOLDING (DHT). The
method is detailed in Algorithm 1. At a high level, DHT iteratively
refines its estimates of the constituent signals w, z (and the super-
position signal x). At any given iteration, it constructs the gradient
using (4.2). Next, it updates the current estimate according to the
gradient update being determined in Algorithm 1. Then, it performs
hard thresholding using the operator P2s to obtain the new estimate
of the components w and z. This procedure is repeated until a stop-
ping criterion is met. See Section 5 for the choice of stopping crite-
rion and other details.

Implicitly, we have assumed that both component vectors w and
z are s-sparse; however, in passing we note that the algorithm and
results easily extend to different levels of sparsity in the two compo-
nents. In Algorithm 1,P2s denotes the projection of vector t̃k ∈ R2n

on the set of 2s sparse vectors which is implemented through simple
hard thresholding by retaining the 2s largest entries of t and setting
the others to zero.

Now, we provide our main theorem supporting the convergence
analysis of DHT. In particular, we derive an upper bound on the
estimation error of the constituent vector t (and therefore, the com-
ponent signals w, z).

Theorem 4.1. Consider the measurement model (3.2) with all
the assumptions mentioned for the second scenario in Section 3.
Suppose that the corresponding objective function F satisfies the
RSS/RSC properties with constants M6s and m6s on the set J with
|J | ≤ 6s such that 1 ≤ M6s

m6s
≤ 2√

3
. Choose a step size parameter

η′ with 0.5
M6s

< η′ < 1.5
m6s

. Then, DHT outputs a sequence of esti-
mates (wk, zk) such that the estimation error of the true constituent
vector, t∗ = [w∗; z∗] ∈ R2n satisfies the following upper bound (in
expectation) for any k ≥ 1:

‖tk+1 − t∗‖2 ≤ (2q)k ‖t0 − t∗‖2 + Cτ

√
s

m
, (4.3)

where q = 2
√

1 + η′2M2
6s − 2η′m6s and C > 0 is a constant that

depends on the step size η′ and the convergence rate q.

Equation (4.3) indicates the linear convergence behavior of our
proposed algorithm. In particular, for the noiseless case τ = 0, this
implies that Alg. 1 returns a solution with accuracy κ after N =

O(log ‖t
0−t∗‖2
κ

) iterations. The proof of Theorem 4.1 leverages the
fact that the objective function F (t) in (4.1) satisfy the RSC/RSS
conditions specified in Definition 3.3. Please see [10] and [26] for a
more detailed discussion.

In the next theorem, we also provide the sample complexity of
Alg. 1:

Theorem 4.2. Under the assumptions in Theorem 4.1, the sam-
ple complexity or the required number of measurements to re-
liably recover constituent signals w and z is given by m =
O(s logn log2 s log(s logn)), provided that the bases Φ and Ψ
are incoherent enough.

The leading constant in the expression for m is somewhat com-
plicated, and hides the dependence on the incoherence parameter ε,
the cross-coherence ϑ, the RSC/RSS constants, and the growth pa-
rameters of the link function l1 and l2. See [10] for more details.

5. NUMERICAL RESULTS

In this section, we provide some numerical experiments to illustrate
the performance of the proposed algorithm both in synthetic and
real data. We compare the algorithm with a convex relaxation-based
heuristic version of the proposed algorithm that we dub as DEMIX-
ING WITH SOFT THRESHOLDING (DST) which is a modification
of the nonlinear recovery method in [25], and two other algorithms
called NLCDLASSO and ONESHOT [9, 4] as discussed above in
Section 2. In the experiments below, the initial estimate x0 in both
DHT and DST is set to be the solution returned by ONESHOT.



(a) DHT (b) DST

(c) ONESHOT (d) NLCDLASSO

Fig. 1: Phase transition plots of various algorithms for solving the
demixing problem (3.2) as a function of sparsity level s and number
of measurements m.

(a) Original x (b) Φ(ŵ) Ψ(ẑ)

Fig. 2: Successful demixing on a real 2-dimensional image from non-
linear under-sampled observations with DHT. Parameters: n =
512 × 512, s = 1000,m = 15000, g(x) = 1

1+e−x − 1
2

. Image
credits: NASA and [2].

We first generate constituent signals, w, z ∈ Rn with n = 216.
We consider 1D Haar wavelets and noiselet bases for Φ and Ψ re-
spectively; these bases are known to be maximally incoherent rela-
tive to each other [28]. In addition, we choose a partial DFT ma-
trix as the measurement matrix A. All three matrices (A,Φ,Ψ) are
known to support fast matrix-vector multiplication operations and
are well-suited for our application.

Both ONESHOT and NLCDLASSO do not assume knowledge
of the link function and return a solution modulo a scalar ambigu-
ity. Therefore, to compare performance across algorithms, we use
the (scale-invariant) Cosine Similarity between the original super-
position signal x and the output of a given algorithm x̂ defined as
follows: cos(x, x̂) = xT x̂

‖x‖2‖x̂‖2
.

Figure 1 illustrates the performance of the four algorithms in
terms of phase transition plots, following [1]. In these plots, we
varied both the sparsity level s and the number of measurements m.
For each pair (s,m), we randomly generate the test superposiition
signal (by choosing both its support and coefficients at random) as
well as the measurement matrix. We repeat this experiment over 20
Monte Carlo trials. The nonlinear link function is chosen as g(x) =

2x + sin(x); it is easy to check that the derivative of this function
is strictly bounded between l1 = 1 and l2 = 3. The number of
iterations for both DHT and DST is set to to 1000. The step size
η′ is hard to estimate in practice, and therefore is chosen by manual
tuning such that both DHT and DST show the best performance.
We calculate the empirical probability of successful recovery as the
number of trials in which the output cosine similarity is greater than
0.99. Pixel intensities in each figure are normalized to lie between 0
and 1, indicating the probability of successful recovery.

As we observe in Fig. 1, DHT has the best performance
among the different methods, and in particular, outperforms both
the convex-relaxation based methods. The closest algorithm to
DHT in terms of the signal recovery is DST, while the LASSO-
based method fails to recover the superposition signal x (and the
constituent signals w and z). The improvements over ONESHOT
are to be expected since as discussed in [4], this algorithm does not
leverage the knowledge of the link function g and is not iterative.

We also demonstrate the performance of our proposed algorithm
on real-world 2D images. For this experiment, we consider an as-
tronomical image illustrated in Fig. 2. This image includes two
components; the “stars” component, which can be considered to be
sparse in the identity basis (Φ), and the “galaxy” component which
are sparse when they are expressed in the discrete cosine transform
basis (Ψ). The superposition image x = Φw+Ψz is observed using
a subsampled Fourier matrix with m = 15000 rows multiplied with
a diagonal matrix with random ±1 entries [29]. Further, each mea-
surement is nonlinearly transformed by applying the (shifted) logis-
tic function g(x) = 1

1+e−x − 1
2

as the link function. In the recovery
procedure using DHT, we set the number of iterations to 1000 and
step size η′ to 150000. As is visually evident, our proposed DHT
method is able to reliably recover the component signals.
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