
LOW RANK PHASE RETRIEVAL

Seyedehsara Nayer*, Namrata Vaswani*, Yonina C. Eldar**

*Iowa State University, Ames, IA, {sarana,namrata}@iastate.edu, **Technion, Haifa, Israel

ABSTRACT

We study the problem of recovering a low-rank matrix, X , from
phaseless measurements of random linear projections of its columns.
We develop a novel solution approach, called AltMinTrunc, that con-
sists of a two-step truncated spectral initialization step, followed by
a three-step alternating minimization algorithm. We obtain sample
complexity bounds for the AltMinTrunc initialization to provide a
good approximation of the true X . When the rank of X is low
enough, these are significantly smaller than what existing single vec-
tor phase retrieval algorithms need. Via extensive experiments, we
demonstrate the same for the entire algorithm.

Index Terms— Phase retrieval, non-convex methods

1. INTRODUCTION
In the last several years there has been a large amount of work on the
phase retrieval (PR) problem and on its generalization. The original
PR problem involves recovering an n length signal x from the mag-
nitudes of its discrete Fourier transform (DFT) coefficients. Gener-
alized PR replaces the DFT by inner products with any set of mea-
surement vectors, ai. Thus, the goal is to recover x from |ai′x|2,
i = 1, 2, . . . ,m. These magnitude-only measurements are referred
to as phaseless measurements. PR is a classical problem that oc-
curs in many applications such as optics, X-ray crystallography and
astronomy because the phase information is either difficult or impos-
sible to obtain [1]. Algorithms for solving it have existed since the
work of Gerchberg and Saxton and of Fineup [2, 3]. In recent years,
there has been much renewed interest in PR [4, 5, 6, 7, 8, 9, 1]. The
sparse PR problem has also been studied, e.g., see [10, 11, 12].

Early provably correct approaches [4, 5] to PR involved a ‘lifting
solution’: instead of recovering x, these recover the rank-one matrix
(xx′) from yi := trace(aiai

′(xx′)) by solving a convex optimiza-
tion problem; followed by estimating x as the top eigenvector of the
recovered matrix. These recover x (upto a global phase ambiguity)
with only m = cn independent identically distributed (iid) Gaus-
sian phaseless measurements; however because of the ‘lifting’, the
computational and storage complexity is high - it depends on n2 in-
stead of on n. In more recent work, non-convex methods, that do not
lift the problem to higher dimensions, have been explored along with
provable guarantees - AltMinPhase [7], Wirtinger Flow (WF) [8] and
truncated WF (TWF) [9]. TWF had the best sample complexity and
speed. It needs only cn iid Gaussian phaseless measurements. Here,
and throughout, c is reused to denote different numerical constants.

Problem Definition. We consider phase retrieval of columns of
low-rank matrices in the following setting. Instead of a single vector
x ∈ Rn, we have a set of q vectors, x1,x2, . . . ,xq that are such that
the n× q matrix, X := [x1,x2, . . . ,xq], has rank r � min(n, q).
For each xk, we observe a set of m measurements of the form

yi,k := |ai,k′xk|2, i = 1, 2, . . .m, k = 1, 2, . . . , q. (1)

A longer version of this work is under submission to IEEE Transactions
on Signal Processing.

Our goal is to recover the matrix X from these mq measurements.
Since we have magnitude-only measurements of each column xk,
we can only hope to recover each column xk up to a global phase
ambiguity. A motivating example for this problem is a dynamic
astronomical imaging application such as solar imaging where the
sun’s surface properties gradually change over time. Each image ar-
ranged as a 1D vector forms one column xk of X . The changes are
usually due to a much smaller number of factors, r, than the size of
the image, n, or the total number of images, q. Because of this, the
matrix X is exactly (or approximately) low rank.

Contributions. We develop a novel algorithm, called Alt-
MinTrunc, that is partly inspired by AltMinPhase and TWF, to solve
the above problem. AltMinTrunc relies on the fact that a rank r
matrix X can always be expressed (non-uniquely) as X = UB
where U is an n× r matrix with mutually orthonormal columns. It
consists of a truncated spectral initialization step for first initializing
U , and then, B, followed by an alternating minimization algorithm.
Extensive simulation and real video experiments demonstrate its ad-
vantage over existing work.

We also obtain sample complexity bounds for the AltMinTrunc
initialization to get within an ε ball of the true X . As seen in
many earlier works, e.g., [7] or resampled WF [8, Algorithm 2],
for a fixed error level, the sample complexity of the entire algo-
rithm is governed by that of the initialization step and hence our
results are important. We show that, if the goal is to just recover
range(U) with subspace error below a fixed error level, then a total
of mq = cnr2 iid Gaussian measurements suffice with high prob-
ability (whp). When r is small, nr2 is only slightly larger than nr
which is the minimum required to recover U . If the goal is to also
recover the xk’s, then we need more measurements, but still signif-
icantly fewer than cn measurements per column. For example, if
q = c

√
n and r = c logn, then we need only c

√
n(logn)7 mea-

surements per column. If q = cn2, then this reduces to c
√
n. To our

knowledge, our results provide the first set of guarantees for low-
rank matrix recovery from column-wise phaseless measurements.

In [13], we introduced another algorithm called PreLow to solve
the above problem and evaluated it using simulation experiments.
The initialization step of AltMinTrunc is essentially the same as that
of PreLow and hence our guarantees also apply to PreLow’s initial-
ization. The rest of PreLow involves an alternating truncated gra-
dient descent over U and B that requires many parameters to be
carefully set. We compare with PreLow in Sec. 3.

In other somewhat related work [14, 15], the authors study the
problem of recovering a rank r matrix X from measurements of the
form yi = trace(Ai

′X). In the special case when Ai = aia
′
i, our

problem may get wrongly confused with theirs. However, the two
problems are, in fact, completely different because we have access to
phaseless measurements of each column xk of the low-rank matrix
X; moreover, the measurements of each xk are obtained using a
different set of measurement vectors ai,k for each column. It should
be mentioned that the latter is critical for the improved sample com-

plexity of AltMinTrunc over single-vector PR methods because this
is what allows it to exploit averaging over all the m measurements
of all the q vectors xk while estimating U .

2. ALTMINTRUNC: ALTERNATING MINIMIZATION
WITH TRUNCATED SPECTRAL INITIALIZATION

We use the following metrics in our algorithm design and analysis.
1. For two matrices Û and U with mutually orthonormal

columns, SE(Û ,U) := ‖(I − ÛÛ ′)U‖ quantifies the
subspace error between their range spaces.

2. The phase-invariant distance between two vectors is quan-
tified using [8, 9] dist(z1,z2) := minφ∈[0,2π] ‖z1 −
e
√
−1φz2‖. When z1 and z2 are both real, the phase is only

+1 or −1. Thus, in this case, dist(z1,z2) = min(‖z1 −
z2‖, ‖z1 +z2‖) = ‖z1− sign(z1

′z2)z2‖ is a sign-invariant
measure of distance.

Here, and throughout, ‖ · ‖ denotes the l2 norm of a vector or the
induced l2 norm of a matrix. For other lp norms, we use ‖ · ‖p.

AltMinTrunc consists of two steps, initialization and alternating
minimization (alt-min), both of which use the fact that a rank r ma-
trix X can be expressed as X = UB where U is an n × r matrix
with mutually orthonormal columns and B = [b1, b2, . . . bq] is an
r × q matrix. Of course, the decomposition is not unique since we
can always rewrite X as X = (UR)(R′B) where R is a rotation
matrix. The initialization step of AltMinTrunc first computes an esti-
mate of range(U), i.e., it returns Û that may be very different from
U in Frobenius norm, but their spans are close, i.e., SE(Û ,U) is
small. The next step is to initialize the bk’s. Since the goal is to only
recover xk’s accurately, we find estimates b̂k so that dist(Û b̂k,xk)

is small. This is done efficiently by actually estimating gk := Û ′xk
for each k, and setting b̂k = ĝk. The rest of the algorithm consists
of alternating minimization over three sets of variables: the missing
phase of (ai,k

′xk), U , and the bk’s. We explain both steps below.
Initialization. Let 1

q

∑q
k=1 xkxk

′ EVD
= UΛU ′ denote the

reduced eigenvalue decomposition (EVD) of XX ′/q. Define

YU,0 :=
1

mq

m∑
i=1

q∑
k=1

yi,kai,kai,k
′.

It is not hard to see that [8, Lemma A.1],

E[yi,kai,kai,k
′] = 2xkxk

′ + ‖xk‖2I

and hence
E[YU,0] = 2UΛU ′ + trace(Λ)I.

Clearly, the subspace spanned by the top r eigenvectors of this ma-
trix is equal to range(U) and the gap between its r-th and (r+1)-th
eigenvalue is 2λmin(Λ). If m and q are large enough, one can use
an appropriate law of large numbers result to argue that YU,0 will be
close to its expected value whp. By the sin θ theorem [16], as long
as 2λmin(Λ) is large compared to the difference between YU,0 and
its expectation, one can argue that the same will also be true for the
span of the top r eigenvectors of YU,0.

However, as explained in [9], because yi,kai,kai,k′ can be writ-
ten out as ww′ where w is a heavy-tailed random vector, more sam-
ples will be needed for law of large numbers to take effect than if
w were not heavy-tailed. One approach to convert this into a matrix
of the form ww′ where w is sub-Gaussian (and hence not heavy-
tailed) is to use the truncation idea suggested in [9]. Using this, we
compute Û as the top r eigenvectors of

YU :=
1

mq

∑
i

∑
k

yi,kai,kai,k
′
1
{yi,k≤9

∑
i yi,k
m

}
. (2)

Here 1ξ is the indicator function for the statement ξ. The idea of
truncation is to average over only those (i, k)’s for which yi,k is not
too far from its empirical mean.

To understand how to initialize the bk’s, consider the matrix

Yb,k := Û ′MkÛ where Mk :=
1

m

∑
i

yi,kai,kai,k
′. (3)

Suppose that Û is independent of Mk. Then, conditioned on Û , the
expectation of the above matrix is

Û ′(2xkxk
′ + ‖xk‖2I)Û = 2gkgk

′ + ‖xk‖2I

Clearly, the top eigenvector of this expectation is proportional to gk
and the gap between its first and second eigenvalues is 2‖gk‖2 =

2‖Û ′Ubk‖2. Thus, as long as range(Û) is a good estimate of
range(U), the eigen-gap will be close to 2. Let gk = vkνk where
νk = ‖gk‖. So, once again, if m is large enough, one can argue that
the top eigenvector of Û ′MkÛ , denoted v̂k, will be a good estimate
of vk. Using this idea, we initialize the xk’s as x̂k = Û v̂kν̂k where
ν̂k =

√∑
i yi,k/m is an estimate of νk. We do not use truncation

here because gk is an r length vector, with r � n, and we anyway
need to use many more than r measurements for accurate recovery.

The complete initialization algorithm is summarized in Algo-
rithm 1. Here we use the same set measurements to recover both U
and bk’s and hence the independence required above is not ensured,
but the algorithm still works in practice.

Algorithm 1 AltMinTrunc-init: initialization step of AltMinTrunc

1. Compute Û as top r eigenvectors of YU defined in (2).

2. For each k = 1, 2, . . . , q,

(a) compute v̂k as the top eigenvector of Yb,k defined in
(3).

(b) compute ν̂k :=
√

1
m

∑
i yi,k

(c) set b̂k = ĝk = v̂kν̂k and x̂k := Û ĝk.

Output Û and x̂k’s for all k = 1, 2, . . . , q.

Alternating Minimization. The rest of the algorithm is an intu-
itive modification of the original Gerchberg-Saxton algorithm [2, 3],
or the later AltMinPhase algorithm [7], to the current problem. Let
yk := [y1,k,y2,k, . . . ,ym,k]′ and Ak := [a1,k,a2,k, . . . ,am,k].
Then

√
yk = |Ak

′xk|. Suppose that the phase information were
available, i.e., suppose that we had access to a diagonal matrix Ck

so that Ck
√
yk = Ak

′xk. Then recovering X from these linear
measurements would be an example of a low-rank matrix recovery
problem. This itself can be solved by minimizing over U and B
alternatively, see, e.g., [17] and references therein. With B fixed,
this is a least squares (LS) recovery problem for U and vice versa.
With estimates of U and B, we can estimate the phase matrix Ck as
Ĉk = diag(phase(Ak

′Û b̂k)). AltMinTrunc, summarized in Algo-
rithm 2, alternates between these three steps. We show the power of
AltMinTrunc over TWF in Fig. 1.

3. NUMERICAL EXPERIMENTS
We compare AltMinTrunc (AMT) with TWF [9] and with PreLow
[13]. TWF does not use the low rank property of the data. To ob-
tain a TWF-based benchmark method that does use this property, we
developed and evaluated TWF-proj. At the end of the TWF initial-
ization for all xk’s and at the end of each TWF iteration, TWF-proj

Algorithm 2 Complete AltMinTrunc algorithm

• Let Û and b̂k denote the output of the initialization step (Al-
gorithm 1).

• For t = 1 to T , repeat the following three steps:

1. for all k = 1, 2, . . . , q, Ĉk ← diag(phase(Û b̂k))

2. Û ← arg minŨ

∑
k ‖Ĉk

√
yk −Ak

′Ũ b̂k‖2

3. for all k = 1, 2, . . . , q,
b̂k ← arg minb̃k

‖Ĉk
√
yk −Ak

′Û b̃k‖2

• Output Û and x̂k = Û b̂k for all k = 1, 2, . . . , q.

The LS step of steps 2 and 3 can be solved in closed form as follows.

• Step 2: let Ûvec be columnwise vectorized version of
Û ; compute Ûvec = (M ′M)−1M ′yc where yc =

[Ĉ1
√
y1; Ĉ2

√
y2; . . . ; Ĉq

√
yq], M = [M1;M2; . . .Mq]

and Mk = [Ak
′(b̂k)1,Ak

′(b̂k)2, . . . ,Ak
′(b̂k)r]; reshape

it to get Û . Here ; means we concatenate the Mk’s or the
Ĉk
√
yk ’s column-wise.

• Step 3: b̂k = (M ′M)−1M ′Ĉk
√
yk where M = Ak

′Û .

Original AMT TWFp TWF
Fig. 1: First column: frame number 63, 33 and 3, of the original
plane video (not low-rankified). Next three columns: frames recov-
ered using AltMinTrunc (AMT), TWF-proj (TWFp) and TWF from
m = 3n phaseless coded diffraction pattern (CDP) measurements.

projects the current estimated X onto the space of rank r matri-
ces. Lastly, we also developed and evaluated AMT2, which uses
AMT-init (Algorithm 1) for initialization, but TWF-proj to replace
the alt-min iterations.

Simulation experiments. U is generated by orthonormalizing
an n × r matrix with iid Gaussian entries; bk

iid∼ N (0, I); xk =

Ubk; and yi,k satisfied (1) with ai,k
iid∼ N (0, I). Recovery error

is quantified using NormErr(X, X̂) defined in Theorem 4.1. We
report NormErr (NE) averaged over a 100 time Monte Carlo.

We first demonstrate the power of the proposed initialization,
AMT-init, given in Algorithm 1. We compare it with TWF initializa-
tion (TWF-init) and TWF-proj-init. Here PreLow init is essentially
the same as Algorithm 1 and hence it is not compared with. Data
was generated with n = 100, r = log10 n = 2 and varying q and
m. We report the NormErr in Table 1. As can be seen, AMT-init
significantly outperforms TWF-init and TWF-proj-init, e.g., when
q = 1000, even with m =

√
n = 10, the NormErr of AMT-init is

0.46 while that of TWF is 1.62. The reason for this is that AMT first
estimates U and then B; and Û is computed as the top r eigenvec-
tors of YU which exploits averaging of yi,kai,kai,k′ over both i and
k. TWF initializes each xk as the top eigenvector of yi,kai,kai,k′

averaged over i and thus the averaging over k is not exploited at all.

q = 100 q = 1000
m AMT TWF TWFp AMT TWF TWFp AMT-Same
10 1.32 1.62 1.00 0.46 1.62 0.73 0.99
50 0.53 1.48 0.77 0.11 1.48 0.57 0.99

100 0.23 1.35 0.59 0.06 1.35 0.49 0.98
Table 1: Initialization error comparison. NormErr is displayed.
AMT-Same: AMT applied to measurements yi,k := (a′ixk)2.

The first step of TWF-proj is TWF for each xk and this, again, does
not utilize averaging over k. For q = 1000, we also show errors of
AMT-Same. This refers to AMT operating on measurements of the
form yi,k := (a′ixk)2. Because it uses the same ai’s for all xk’s, it
does not gain from the averaging over k. Hence its errors are large.

Next, we compare the complete AltMinTrunc (AMT) algorithm
given in Algorithm 2 with TWF [9], TWF-proj (TWFp), AMT2
and PreLow [13]. TWF was implemented using the authors’ code.
TWFp was implemented by including the projection step after the
initialization and after each iteration in the TWF code. PreLow was
implemented exactly as stated in [13]. Data was generated using
n = 100, r = 2 and varying q and m. All algorithms were run until
either NormErr ≤ 0.0001 or for a total of 300 iterations, whichever
came first. We display the averaged NE and execution time in Table
2. The execution times are shown in parentheses. Clearly, AMT has
the smallest error with AMT2 error being only a little larger. PreLow
has the third largest error, followed by TWFp and then TWF.

Time complexity. Both the initialization and per iteration time
complexity of AMT is at least r times that of TWF. However, since
the AMT initialization error is much smaller, the total number of
iterations needed by AMT to get to NormErr < 0.0001 is smaller
than those needed by TWF and TWF-proj. This why the complete
AMT algorithm is actually faster than TWF or TWFp. A similar
argument applies for AMT2 as well. In fact, since its per iteration
time complexity is governed by that of TWFp (which is faster per
iteration than AMT), it is the fastest.

m AMT AMT2 TWF TWFp Prelow
q = 100

50 0.08 (6) 0.240 (3.2) 46 (7) 41 (9) 0.741 (1)
100 0.003 (2) 0.002 (0.54) 1 (9) 0.09 (4) 0.065 (1)

q = 1000
50 0.052 (39) 0.070 (40) 2e55 (48) 1e40 (54) 0.34 (7)

100 0.0009 (10) 0.003 (5) 40 (54) 0.14 (53) 0.003 (6)
Table 2: Results for simulated data, full algorithm: the table is dis-
played as NormErr (time in seconds).

Real videos and Coded Diffraction Pattern (CDP) measure-
ments. We used real videos that are approximately low rank and
CDP measurements of their images. Briefly, the CDP model con-
sists of masked-Fourier measurements: one applies a different ran-
dom mask (random diagonal matrix) to each xk followed by DFT of
the resultant vector. More details are explained in [18]. Each image
(arranged as a 1D vector) corresponds to one xk and hence the entire
video corresponds to the matrix X . We show results on a moving
mouse video and on the moving airplane video shown in Fig. 1. We
show results both with “low-rankified videos” and with the origi-
nal airplane video. The airplane images were of size n1 × n2 with
n1 = 240, n2 = 320; the mouse images had n1 = 180, n2 = 319.
Thus, n = n1n2 = 76800 and n = 57420 respectively. Mouse
video had q = 90 frames and airplane one had q = 105 frames. A
detailed explanation of this experiment is given in [18].

We display the NormErr for AMT, AMT2, TWF and TWF-proj
in Table 3. Execution times are again shown in parentheses. Three
frames of the results corresponding to the last row of this table are
shown in Fig. 1 in Sec. 2. As can be seen, AMT has the smallest er-

AMT AMT2 TWF TWFp
Mouse, Low-rankified video, r = 15,m = 2n

8.0e-04 (18776) 0.07 (905) 2.2 (103) 13 (394)
Plane, Low-rankified video, r = 6,m = 2n

7.8e-10 (1036) 6.9e-07 (574) 2.2 (137) 14 (327)
Plane, Original video, r = 25,m = 3n

0.146 (13472) 0.150 (3451) 2.0 (207) 14 (950)

Table 3: Results for videos with CDP measurements: the table is
displayed as NormErr (time in seconds).
ror in all cases. AMT is also the slowest. TWF and TWFp fail when
m is small: notice that NormErr is much more than one even with
m = 3n. AMT2 is slower than TWF and TWFp but is much faster
than AMT. Its errors are only a little larger than AMT and hence it
may offer the best compromise between speed and performance.

4. PERFORMANCE GUARANTEES
In this section, we show that we can get a provably accurate initial
estimate of both U and of the xk’s whp when using iid Gaussian
measurement vectors, ai,k. The proof consists of two parts. We
first bound the subspace recovery error SE(Û ,U). Next, we use
this to bound the error in estimating the xk’s, dist(x̂k,xk). To do
this, we show that, if Û is a given matrix with SE(Û ,U) ≤ εU ,
and if the measurement vectors that are used to estimate the bk’s are
independent of Û , then, whp, dist2(x̂k,xk) ≤ cε. To ensure that
the independence assumption holds, we borrow a standard trick used
in many earlier works, e.g., [7]. We partition the measurements into
two disjoint sets of sizem and m̃ respectively; we use the first set for
estimating U and the second set for estimating the bk’s. Denote the
first set of measurements and measurement vectors by yi,k and ai,k
respectively. Denote the second set by ynewi,k and anewi respectively.
Since the bk’s are recovered independently, in the second set, we can
use the same measurement vectors, anewi , for all xk’s.

Let 1
q

∑
k xkxk

′ EVD
= UΛ̄U ′ denote its reduced EVD. Since

xk = Ubk, this implies that Λ̄ = 1
q

∑
k bkbk

′. Let λ̄max denote its
maximum eigenvalue and λ̄min its minimum eigenvalue. Define

ρ :=
maxk ‖bk‖∞

λ̄max

and κ :=
λ̄max

λ̄min

.

This definition of ρ implies that maxk ‖bk‖2 ≤ rρλ̄max. κ denotes
the condition number of Λ̄ and hence also of XX ′. With these
definitions, we can state our results in terms of just κ and ρ.

Theorem 4.1. For each xk, k = 1, 2, . . . , q, we observe m phase-
less measurements yi,k := (ai,k

′xk)2 with ai,k
iid∼ N (0, I); and

m̃ phaseless measurements ynewi,k := (anewi
′xk)2 with anewi

iid∼
N (0, I), and with anewi ’s are independent of ai,k’s. Consider the
output of Algorithm 1 with step 2 modified as follows: replace yi,k
and ai,k by ynewi,k and anewi respectively. Suppose that r ≤ cn1/5.
For an ε < 1, if

m̃ ≥ c
√
n

ε2
, m ≥ cκ2 · r4 logn(log m̃)2

ε2
,

mq ≥ cρ2κ2 · nr4(log m̃)2

ε2
,

then, with probability (w.p.) at least 1− 2 exp(−cn)− 16q
n4 ,

1. SE(Û ,U) := ‖(I − ÛÛ ′)U‖ ≤ cε
r log m̃

;

2. for all k = 1, 2, . . . , q, dist(xk, x̂k)2 ≤ cε‖xk‖2, and so

NormErr(X, X̂) :=

∑q
k=1 dist(xk, x̂k)2∑q

k=1 ‖xk‖2
≤ cε.

Further, if q ≤ cn2, then the above holds w.p. at least 1− c/n2.

Proof: See [18].
Observe that the lower bounds onm andmq depend on κ2. This

is pretty typical, e.g., it is also the case in [17]. Note also that the
probability of the good event depends inversely on q. This comes
from needing to ensure that each of the q xk’s are accurately re-
covered. However, it is a weak dependence; it can be removed if
q ≤ cn2.

For the rest of our discussion, assume that ε, κ and ρ are fixed.
Since Theorem 4.1 provides a bound for AltMinTrunc which ex-
ploits the low-rank property of X , when r/q is small, its per col-
umn sample complexity is significantly smaller than what single
vector PR methods need. For example, if r = c logn and q =
cr4(logn)3 = (logn)7, AltMinTrunc needs m̃ = c

√
n and m =

cn/ logn and hence a total of cn/ logn measurements per column.
For q = cn2, this number reduces to just c

√
n. On the other hand,

single vector PR methods need this number to be at least cn.
When the goal is to only recover U with subspace error at most

ε, AltMinTrunc needs even fewer measurements.We have the fol-
lowing corollary.

Corollary 4.2. In the setting of Theorem 4.1, if m̃ = 0, m ≥
cκ2r2 logn

ε2
and mq ≥ cρ2κ2·nr2

ε2
, then with probability at least 1 −

2 exp(−cn)− 2q
n4 , SE(Û ,U) ≤ cε.

Recall that U is an n×r matrix. From Corollary 4.2, for a fixed
ε, ρ, and κ, one needs a total of only mq = cnr2 measurements to
recover U . When r is small, e.g., r = c logn, this is only slightly
more than the minimum required which would be nr.

To recover the bk’s, notice from Theorem 4.1 that we need an ex-
tra set of m̃ ≥ c

√
n measurements and an extra factor of (r log m̃)2

in the lower bounds on m and mq. A few points should be men-
tioned. First, m̃ ≥ c

√
n can be replaced by m̃ ≥ cn1/5, or in fact

cn1/d for any integer d > 2, and our result will not change, except
for numerical constants. Second, we could also completely replace
this lower bound by m̃ ≥ cr log4 r which is much nicer, but then
Theorem 4.1 will hold with probability only 1− 8q

m̃8 −2 exp(−cn)−
8q
n4 . Third, if m̃ is equal to its current lower bound of c

√
n, and r

is small, e.g., if r = c logn, the extra factor of (r log m̃)2 is only
c(logn)4. The reason that we need this extra factor is because our
algorithm recovers gk := Û ′Ubk and sets x̂k = Û ĝk. Thus, for
it to give an accurate enough estimate of xk, we need to ensure that
SE(Û ,U) is very small so that ‖Û ′U‖ is close to one. In particular
we need SE(Û ,U) ≤ ε/r log m̃. Ensuring this requires a larger
lower bound on mq and m than just ensuring SE(Û ,U) ≤ ε.

Probabilistic model on xk’s. The results given above treat the
xk’s as deterministic unknowns and hence give a high probability
result for one unknown matrix X . We can also assume a probabilis-
tic model on the xk’s and obtain high probability results over a class
of matrices X . This has been done in our long version [18].

5. CONCLUSIONS AND FUTURE WORK
We presented a novel phase retrieval (PR) algorithm, AltMinTrunc
(AMT), for recovering a set of q unknown vectors, xk, lying in a low
(r) dimensional subspace of Rn from their phaseless measurements.
We obtained sample complexity bounds for the initialization step of
AMT; and argued that, when r/q is small, these are much smaller
than those for TWF or any other single-vector PR method.

The first step in future work will be to analyze the entire AMT
algorithm. Another goal will be develop a practical version of AMT
that can estimate the rank, r, automatically from the measurements,
and that uses AMT whenever r̂/q is small, but uses TWF otherwise.

6. REFERENCES

[1] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao,
and M. Segev, “Phase Retrieval with Application to Optical
Imaging,” IEEE Signal Process. Mag., vol. 32, no. 3, pp. 87–
109, 2015.

[2] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for
the determination of phase from image and diffraction plane
pictures,” Optik, 1972.

[3] J. R. Fienup et al, “Phase retrieval algorithms: a comparison,”
Applied Optics, pp. 2758–2769, 1982.

[4] E. J. Candes, Y. C Eldar, T. Strohmer, and V. Voroninski,
“Phase retrieval via matrix completion,” SIAM J. Imaging Sci.,
vol. 6, no. 1, pp. 199–225, 2013.

[5] E. J. Candes, T. Strohmer, and V. Voroninski, “Phaselift: Exact
and stable signal recovery from magnitude measurements via
convex programming,” Comm. Pure Appl. Math., 2013.

[6] Y. C. Eldar and S. Mendelson, “Phase retrieval: Stability and
recovery guarantees,” Appl. Comput. Harmon. Anal., vol. 36,
no. 3, pp. 473–94, May 2014.

[7] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval us-
ing alternating minimization,” in Adv. Neural Info. Proc. Sys.
(NIPS), 2013, pp. 2796–2804.

[8] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval
via wirtinger flow: Theory and algorithms,” IEEE Trans. Info.
Th., vol. 61, no. 4, pp. 1985–2007, 2015.

[9] Y. Chen and E. Candes, “Solving random quadratic systems of
equations is nearly as easy as solving linear systems,” in Adv.
Neural Info. Proc. Sys. (NIPS), 2015, pp. 739–747.

[10] K. Jaganathan, S. Oymak, and B. Hassibi, “Recovery of sparse
1-d signals from the magnitudes of their fourier transform,” in
IEEE Intl. Symp. on Information Theory (ISIT). IEEE, 2012,
pp. 1473–1477.

[11] Y. Shechtman, A. Beck, and Y. C. Eldar, “Gespar: Efficient
phase retrieval of sparse signals,” IEEE Trans. Sig. Proc., vol.
62, no. 4, pp. 928–938, 2014.

[12] A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich,
P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit,
T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C.
Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot
subwavelength coherent diffractive imaging,” Nature Materi-
als, vol. 11, pp. 455–9, Apr. 2012.

[13] S. Nayer, N. Vaswani, and Y. Eldar, “Low rank matrix recovery
from column-wise phaseless measurements,” in IEEE Statisti-
cal Signal Processing Workshop, 2016.

[14] S. Tu, R. Boczar, M. Soltanolkotabi, and B. Recht, “Low-rank
solutions of linear matrix equations via procrustes flow,” arXiv
preprint arXiv:1507.03566, 2015.

[15] Q. Zheng and J. Lafferty, “A convergent gradient descent al-
gorithm for rank minimization and semidefinite programming
from random linear measurements,” in Adv. Neural Info. Proc.
Sys. (NIPS), 2015.

[16] C. Davis and W. M. Kahan, “The rotation of eigenvectors by a
perturbation. iii,” SIAM J. Numer. Anal., vol. 7, pp. 1–46, Mar.
1970.

[17] P. Netrapalli, P. Jain, and S. Sanghavi, “Low-rank matrix com-
pletion using alternating minimization,” in Symposium on The-
ory of Computing (STOC), 2013.

[18] N. Vaswani, S. Nayer, and Y. Eldar, “Low rank phase retrieval,”
submitted to IEEE Trans. Sig. Proc., also at arXiV:1608.04141,
2016.

