
The Liberty Simulation Environment: A
Deliberate Approach to High-Level
System Modeling

MANISH VACHHARAJANI, NEIL VACHHARAJANI, DAVID A. PENRY,
JASON A. BLOME, SHARAD MALIK, and DAVID I. AUGUST
Princeton University

In digital hardware system design, the quality of the product is directly related to the number of

meaningful design alternatives properly considered. Unfortunately, existing modeling methodolo-

gies and tools have properties which make them less than ideal for rapid and accurate design-

space exploration. This article identifies and evaluates the shortcomings of existing methods to

motivate the Liberty Simulation Environment (LSE). LSE is a high-level modeling tool engineered

to address these limitations, allowing for the rapid construction of accurate high-level simula-

tion models. LSE simplifies model specification with low-overhead component-based reuse tech-

niques and an abstraction for timing control. As part of a detailed description of LSE, this ar-

ticle presents these features, their impact on model specification effort, their implementation,

and optimizations created to mitigate their otherwise deleterious impact on simulator execution

performance.

Categories and Subject Descriptors: I.6.2 [Simulation and Modeling]: Simulation Languages;

I.6.5 [Simulation and Modeling]: Model Development—Modeling methodologies; C.4 [Perfor-
mance of Systems]—Modeling techniques; I.6.7 [Simulation and Modeling]: Simulation Sup-

port Systems—Environments

General Terms: Design, Experimentation, Human Factors, Languages

This work was supported by National Science Foundation grants CCR-0082630, CCR-0133712,

and NGS-0305617; a grant from the DARPA/MARCO Gigascale Silicon Research Center; and do-

nations from Intel. Opinions, findings, conclusions, and recommendations expressed throughout

this work are not necessarily the views of the National Science Foundation, DARPA/MARCO, or

Intel Corporation.

Authors’ current addresses: M. Vachharajani, Department of Electrical and Computer Engineer-

ing, University of Colorado, 425 UCB, Boulder, CO 80309; email: manishv@colorado.edu; N.

Vachharajani Computer Science Department, Princeton University, Princeton, NJ 08540; email:

nvachhar@princeton.edu; D. Penry, Electrical and Computer Engineering, Brigham Young Uni-

versity, 459 Clyde Building, Provo, UT 84602; email: dpenry@ee.byu.edu; J. A. Blome, Advanced

Computer Architecture Lab, Department of Electrical Engineering and Computer Science, Univer-

sity of Michigan, 2260 Hayward, Ann Arbor, MI 48109-2121; email: jblome@umich.edu; S. Malik,

Electrical Engineering, Department, Princeton University, B224 Engineering Quad, Princeton, NJ

08540; email: sharad@princeton.edu; D. August, Computer Science Department, Princeton Uni-

versity, Princeton, NJ 08540; email: august@princeton.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0734-2071/06/0800-0211 $5.00

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006, Pages 211–249.

212 • M. Vachharajani et al.

Additional Key Words and Phrases: Liberty Simulation Environment (LSE), structural modeling,

simulator construction, component reuse

1. INTRODUCTION

In digital hardware system design, the quality of the product is directly related
to the number of meaningful design alternatives properly considered. Since pro-
totyping a candidate design is prohibitively expensive, designers rely instead
on models to evaluate design alternatives. While analytical models have many
desirable properties, current analytical modeling methods are only sufficient
to provide accurate guidance for special cases. As a result, designers generally
construct high-level (e.g., microarchitecture level) software simulation models
for feedback.

In the computer architecture community, manually coding a simulator us-
ing a language such as C or C++ is the most common method of producing
a simulation model.1 Unfortunately, this methodology does not provide an ef-
ficient path to an accurate simulation model. The methodology requires the
designer to meticulously map the microarchitecture, which is inherently struc-
tural and concurrent, to a sequential programming language with functional
composition. At best, this manual mapping is labor-intensive and results in
simulator code that does not conveniently convey architectural ideas. At worst,
the simulator code is also difficult to understand and contains potentially seri-
ous errors that go unnoticed.

A common approach aimed at mitigating the problems related to the con-
struction of these simulators is to reuse an existing, carefully constructed, and
validated simulator for the exploration of similar designs. The belief is that
modifying a validated simulator will be easier and result in an accurate deriva-
tive. However, as this article will show, simulator modification suffers from the
same problems as simulator construction; it is time-consuming and error-prone.
Worse, the quality of the original is likely to lead one to a false sense of con-
fidence in the derivative, resulting in only cursory validation, and permitting
potentially serious errors to remain unnoticed.

The concurrent-structural approach is a different approach that elimi-
nates the mapping problem by simply eliminating the manual mapping. This
approach involves a language which allows designers to directly express the
composition of the hardware in terms of components and static connections.
Without the need to manually map, the modeling process is much less labor
intensive. Since the model is a description of the hardware design, it conveys
architectural ideas, is easy for designers to understand, and exposes model/
design mismatches.

Unlike in the manually coded simulator approach, reuse can be quite effec-
tive in the concurrent-structural approach. In concurrent-structural models,
reuse at the component level is an attractive way to reduce model construc-
tion time [Swamy et al. 1995; Charest and Aboulhamid 2002] and improve

1In the 30th International Symposium on Computer Architecture in 2003, at least 23 of 37 articles

used this simulator construction methodology.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 213

accuracy. A component can be built and validated once and then used repeat-
edly, reducing modeling effort and potential sources of errors. The utility of such
reuse is demonstrated by common hardware components such as queues and
arbitration elements which can be used, unmodified, in vastly different hard-
ware designs.

This article will show, however, that existing concurrent-structural modeling
languages and tools force a tradeoff between the ease of building reusable com-
ponents and the ease of using such components. In current systems, this tradeoff
puts a high overhead on reuse, reducing reuse in practice, and thus negating
its benefits. Further, one aspect of hardware design, timing control, does not
benefit from reuse in concurrent-structural systems since timing control is non-
local in nature, making it difficult to partition into one or more reusable model
components. Consequently, in existing systems, users are forced to manually
specify control for each design.

To address problems with existing systems and methodologies, we present
the design and implementation of the Liberty Simulation Environment (LSE).
To avoid the mapping problem, LSE is based around a concurrent-structural
model specification language. Unlike existing concurrent-structural systems,
LSE supports the low-overhead use and construction of reusable components
through several programming language techniques. LSE is also the first sys-
tem to provide an abstraction that simplifies the specification of timing control.
Finally, LSE descriptions are statically analyzable enabling, for example, sim-
ulator construction optimizations to improve simulator execution performance
and tools for automatic model visualization.

The remainder of this article is organized as follows. The first few sections
carefully analyze existing systems to identify the root cause of their shortcom-
ings. Section 2 explores in detail how the manual mapping of microarchitectures
to sequential programs is slow and error-prone, and why reuse cannot allow the
cost of simulator development to be amortized. Section 3 analyzes systems that
do not suffer from the mapping problem to determine why they still do not cre-
ate an environment which encourages reuse. This analysis is then used to moti-
vate the design of the Liberty Simulation Environment. Section 4 describes the
Liberty Simulation Environment. Section 5 identifies the features that reduce
component reuse overhead, and Section 6 describes LSE mechanisms to permit
rapid specification of timing control. Section 7 discusses our experience with
LSE and quantifies the reuse observed in practice. Finally, Section 8 concludes
by summarizing the contributions of this article.

2. THE SEQUENTIAL MAPPING PROBLEM

To manage the design of complex hardware, designers divide the system’s func-
tionality into separate communicating hardware components and design each
individually. Since each component is smaller than the whole, designing the
component is significantly easier than designing the entire system. If compo-
nents are too complex, they too can be divided into subcomponents to further
ease the design process. The final system is built by assembling the individually
designed components. To ensure the components will interoperate, designers,

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

214 • M. Vachharajani et al.

when dividing the system, agree on the communication interface of each com-
ponent. This interface, which defines what input each component requires and
what output each component will produce, encapsulates the functionality of
each component; other parts of the system can change without affecting a par-
ticular component provided its communication interface is respected. We call
this type of encapsulation and communication structural composition.

Leveraging encapsulation to allow this divide-and-conquer design strategy
is also very common in software design. Sequential programming languages
such as C or C++ use functions to encapsulate functionality. Each function has
a communication interface (its arguments and return value) and this interface
encapsulates the function’s behavior. Software systems are built by assembling
functions which communicate by calling one another and passing arguments
and receiving return values. We call this type of encapsulation and composition
functional composition.

The presence of encapsulation combined with designer familiarity and tool
availability make sequential programming languages seem like a natural tool
with which to model hardware systems. However, as will be seen in this sec-
tion, the encapsulation permitted by functional composition in sequential lan-
guages is not the same as the encapsulation provided by structural composition.
This mismatch forces designers to map their structurally composed hardware
designs to functionally composed sequential programming languages. This sec-
tion demonstrates that this mapping is time-consuming, error-prone, and yields
simulators that are difficult to understand and hard to modify. Thus we can con-
clude that, despite the popularity of this methodology, manually coding hard-
ware models in sequential languages is ill-suited for design space exploration.

The discussion of the mapping problem proceeds as follows. Section 2.1 de-
scribes why simulators built using sequential languages (sequential simulators)
are hard to build, difficult to understand, and, thus, prone to error. Section 2.2
presents empirical data supporting this claim. Section 2.3 explains why build-
ing a new simulator by modifying an existing one is difficult, illustrating that
the cost of building and validating simulators cannot be amortized across many
designs during exploration. Section 2.4 presents empirical data supporting this
claim.

2.1 Simulator Construction and the Mapping Problem

When dividing a complex hardware design into simpler components, designers
choose a partitioning that allows them to most easily understand the design.
Often this partitioning forms the vocabulary that designers use to think about
and discuss the design. Consequently, the easiest simulator to build and under-
stand would share this same partitioning. Unfortunately, differences between
the styles of encapsulation used in hardware and sequential programming lan-
guages prevent this. As will be described in this section, when mapping from
hardware components to software functions, the encapsulation provided by the
hardware components must be broken forcing the designer to reason about
many components simultaneously. This reasoning, and therefore the mapping,
is laborious and extremely time-consuming. Further, since the encapsulation

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 215

of code in the simulator is not representative of the hardware, understand-
ing how a simulator written in a sequential language models hardware is also
difficult. Ultimately, modeling hardware in a sequential language hides pieces
of a component’s interface, intertwines computation and communication, and
requires manual orchestration of concurrency.

A fundamental attribute of the encapsulation provided by hardware is the
explicit specification of interfaces and the clear separation between function-
ality and communication. A hardware component will typically define its com-
munication interface as a collection of ports through which it receives input
and sends output. The component will define its behavior by specifying how it
translates data arriving at its input ports to data it will send to its output ports.
Independent of this specification of interface and behavior, the communication
of the system is determined by the connectivity of its components’ ports. A par-
ticular component may receive input from one or more other components and,
similarly, may send its output to one or more recipients.

The encapsulation provided by functions in sequential programming lan-
guages seems similar. The arguments to the function seem to mirror a com-
ponent’s input ports, and the return value seems to mirror the output ports.
The body of the function specifies its behavior as a translation from inputs
to outputs. Unfortunately, calling a function from within the body of another
function implicitly augments the communication interface of the caller and in-
tertwines functionality with communication. The arguments sent to the callee
and the return value received from it are additional implicit outputs and inputs
of the caller. Further, the recipient of data sent and the sender of data received
from this augmented interface is determined by the function being called. Un-
like structural composition, a function must receive all of its arguments from
a single caller and send all of its outputs back to that same caller. Therefore,
the arbitrary and independently specified communication patterns provided by
structural composition are absent when using functional composition.

An alternative style of modeling hardware in a sequential programming lan-
guage uses global variables, as opposed to function arguments and return val-
ues, to communicate information through the system. Unfortunately, in such
systems, the problems discussed above still exist. The communication interface
of a particular function is still implicitly specified through its behavior spec-
ification. Each global variable accessed defines a piece of the function’s com-
munication interface. Further, the behavior and communication of a function
are still intertwined since two functions communicate if one writes to a global
variable that the other reads. Furthermore, when using global variables, even
the specification of communication is implicit, unlike in the previous style. The
target of communication is never explicitly specified but implied by analyzing
how data flows through global variables. Two functions may appear to commu-
nicate because they access the same global variable, but a third function may
overwrite the global variable after the first has written it but before the second
has consumed the data. Careful examination is required to truly understand
the communication present in such systems.

The implicit communication when using global variables reveals an-
other shortcoming of the encapsulation provided by functional composition.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

216 • M. Vachharajani et al.

Fig. 1. Sequential simulator code.

Components in a hardware system execute concurrently with one another. If a
component has sufficient input to perform a computation, it will proceed with-
out waiting for additional input. With sequential programming languages and
functional composition, however, the interactions between components must
be manually orchestrated by sequencing function invocation. Sequencing these
invocations may not be straightforward. For example, when using global vari-
ables to communicate, interchanging the order in which two functions are called
can cause data to be delayed by a cycle or can even change the communication
pattern. Great care must be taken to ensure the proper sequence is specified.
Worse still, if functions have not been appropriately partitioned, there may be
no correct order of invocation. For example, if component A generates output
that feeds component B, and an output of component B feeds component A, then
no order of invocation between A and B will work. The functions would need to
be partitioned so that the new functions could be scheduled.

The problems discussed above are all manifestations of the mapping problem.
To see how this problem can occur in practice, consider the following example.
Figure 1(a) shows a typical main simulation loop for a sequential simulator that
models a five-stage superscalar processor pipeline. The hardware is modeled
using a function per pipeline stage. The functions communicate through global
variables, which effectively model the pipeline registers between the stages.
Since later pipeline stages wish to use data produced from previous cycles,
they must run before the global variables get overwritten by earlier stages.
Therefore, the main simulator loop begins computation at the back of the pipe
and moves toward the front so that later pipeline stages use state from previous
cycles, before earlier stages overwrite the data. This invocation order also allows
back-pressure to flow through the pipe. If a stage later in the pipeline stalls, it
can set a global variable to inform earlier stages of the stall.

We now focus on the issue stage of the pipeline, whose code is shown in
Figure 1(b). From the pseudocode we see that, when an instruction is sent to its

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 217

functional unit, it is simultaneously removed from the instruction window (lines
7–8 and 12–13 in Figure 1(b)). When the fetch stage (the stage that places
instructions into the instruction window) is executed, the newly created space
will be available for new instructions.

Now, suppose that the designers would like to model a different behavior
in which freed slots in the instruction window are not available until the cy-
cle after the instruction was issued. Such a behavior may be desirable if, for
example, the dequeue signals would arrive too late in the cycle with the orig-
inal behavior. The hardware differences between the original and the new be-
havior simply amount to removing the dequeuing logic from the computation
of a control signal indicating the number of slots available. Figures 1(c) and
1(d) show the necessary changes to the simulator main loop and issue logic,
respectively, to model the new behavior.

Notice that the sequential simulator code that models two very similar ar-
chitectures contains significant differences. These differences are indicated by
the bars to the right of the line numbers in Figure 1. Specifically, the change to
the microarchitecture required partitioning of code for the issue logic and the
addition of new simulator state to allow the pieces of the issue logic to commu-
nicate. The code to dequeue instructions from the instruction window had to
be separated from the code that dispatched instructions to the functional units
since these two events occur at different times in the modified hardware design.
The majority of the issue logic remains in the issue stage function, but some
of the logic is now intermingled with the code that schedules the execution of
the pipeline stages (lines 7–9 in Figure 1(c)). The modified code also needs an
additional global variable to maintain the issued status for each issue window
slot so that the piece of the issue logic that dequeues instructions knows which
instructions were issued.

Just as changing instruction window timing required partitioning a single
logical entity in the hardware into multiple functions in the simulator model,
other microarchitecture features may also force undesirable partitioning. While
this small example may not seem overwhelming, this kind of partitioning is
very common throughout the code for sequential simulators. Because of this,
sequential simulator authors need to carefully plan how hardware component
functionality needs to be partitioned, decide what global state will be used for
communication, and carefully orchestrate the invocation of functions to ensure
that all global state is updated in the correct sequence.

Notice that this mapping process can be extremely complicated and there-
fore difficult to perform correctly. Since mistakes can easily be made, the re-
sulting simulator needs to be carefully checked to ensure correctness. Cor-
rectness is usually determined by testing each component as a unit and then
testing the composed whole. In the best case, the entire model will be built
by reusing prevalidated components. As we have seen, however, the mapping
process breaks structural encapsulation, thus making component testing and
component-based reuse impossible. Even components commonly thought of as
testable units in a sequential simulator, such as a cache component, are not in-
dependently testable since, to allow correct modeling of timing, they are often
tightly coupled to the whole simulator [Desikan et al. 2001].

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

218 • M. Vachharajani et al.

Sequential simulators are also difficult to manually validate as a whole. De-
signers understand the hardware in terms of hardware components and their
communication. A strict separation of computation, communication, and oper-
ation sequencing is critical to the understanding of a hardware design. As seen
above, however, the way in which a sequential simulator is built breaks com-
ponent encapsulation and intermingles communication and computation. Fur-
thermore, recall that with sequential simulators communication between code
that models hardware blocks is often implicit. This makes the resulting simula-
tor difficult to understand and thus difficult to manually validate. This in turn
makes an accurate simulator even more difficult and time-consuming to build.

2.2 Simulator Construction and the Mapping Problem: Model Clarity

The previous discussion describes why accurate sequential simulators are dif-
ficult to build. Correctness is especially hard to ensure because the simulator
is very hard to understand. The experiment presented in this section supports
the claim that sequential simulators are difficult understand and thus difficult
to validate.

To quantify the clarity of sequential simulators, a group of subjects was asked
to examine sequential simulator code modeling a microprocessor and identify
properties of the machine modeled. As a reference point, the subjects were asked
exactly the same questions for a model of a similar machine built in the Liberty
Simulation Environment (LSE). As described in detail later, LSE is a hardware
modeling framework in which models are built by connecting concurrently ex-
ecuting software blocks much in the same way hardware blocks are connected.
Thus, LSE models closely resemble the hardware block diagrams of the ma-
chines being modeled. We call these structurally composed models structural
models to distinguish them from functionally composed sequential simulators.

Subjects received different versions of the machine models to ensure that the
effects observed were not a due to a particularly hard-to-understand hardware
policy. The sequential simulators used were modified and unmodified versions
of sim-outorder.c from version 3.0 of the popular SimpleScalar tool [Burger
and Austin 1997]. sim-outorder.c models a superscalar machine that executes
the Alpha instruction set. The LSE models were variations of a superscalar
processor model that executed the DLX instruction set. A refined version of
this model was released along with the Liberty Simulation Environment in the
package tomasulodlx [The Liberty Research Group 2003].

To ensure that the experiment measured the quality of the model, not the
knowledge of the subjects, all the subjects were either Ph.D. students study-
ing computer architecture or Ph.D. holders whose primary work involved com-
puter architecture. To ascertain the background of subjects, each was given
a questionnaire to determine their familiarity with computer architecture,
programming languages, and existing simulation environments, particularly,
SimpleScalar. A summary of the answers to this questionnaire is in Table I.

Note that finding qualified subjects unaffiliated with the Liberty Research
Group for this experiment was challenging given the requirements. Subjects
had to be very familiar with computer architecture and also had to be familiar

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 219

Table I. Subject Responses to the Background Questionnaire

Years Wrote Wrote Years Days Used

in a C RTL for a Experience Experience Simple-

Subject Architecture Simulator CPU Core w/ C/C++ w/ LSE Scalar

S1 3 Yes No 5 3 Yes

S2 10 Yes Yes 15 2 No

S3 3 No Yes 5 2 No

S4 3 No No 6 3 Yes

S5 3 No No 7 3 No

S6 3 Yes Yes 6 3 Yes

S7 3 No Yes 8 3 Yes

S8 3 No No 5 4 No

S9 2 No No 14 5 No

S10 6 Yes No 10 5 Yes

S11 7 No No 7 2 No

S12 3 Yes Yes 2 2 Yes

S13 7 No Yes 10 2 No

S14 2 No No 10 2 No

S15 1 No No 10 2 No

S16 2 Yes No 8 2 Yes

S17 6 No No 6 2 No

S18 3 No No 4 2 Yes

S20 3 No No 5 2 Yes

S21 2 Yes No 6 2 Yes

S22 2 Yes No 6 2 Yes

S23 1 No Yes 10 21 No

S24 4 No Yes 6 7 No

with LSE. Though growing in popularity, LSE was still a new system, making
the second constraint the most difficult to satisfy. Only 24 of all LSE users could
be recruited as subjects for this experiment. As will be seen, however, even with
24 subjects the results were quite dramatic.

Subjects were given 90 min to answer two control questions, two multipart
questions for the structural model, and two identical multipart questions for
the sequential simulator (for a total of 10 question parts, excluding the con-
trol questions). These questions, with placeholders for the line numbers, can be
found in the literature [Vachharajani 2004]. The control questions were used
to determine if the subjects had basic familiarity with LSE since all but one
subject had less than 1 week of experience with the tool. The answers to the con-
trol questions indicated that all subjects, except subject S19, understood LSE
enough for the purposes of this experiment. Accordingly, the data presented
here excludes subject S19. It is clear from the questionnaire results in Table I
that all remaining subjects were familiar with the C programming language,
the language with which the sequential model was constructed.2

Figure 2(a) summarizes the results. Since the subjects had limited time, not
all subjects could answer all questions. The first and third bars correspond
to responses regarding the structural model. The first bar assumes that all
questions left unanswered were answered incorrectly. The third bar shows the

2More details regarding the questions and machine models are available in the references

[Vachharajani 2004].

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

220 • M. Vachharajani et al.

Fig. 2. Results of the simulator clarity experiment.

same data assuming that all unanswered questions were answered correctly.
The second and fourth bars show the same information for questions regarding
the sequential simulator. Just as before, the second bar assumes that unan-
swered questions were answered incorrectly, and the fourth bar assumes that
unanswered questions were answered correctly. “Missing” bars represent sub-
jects that answered no questions correctly for a particular model. From the

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 221

graph, we can see that in each case subjects were able identify the machine
properties at least as accurately with the structural model as they were with
the sequential simulator, and usually much more accurately. On average, sub-
jects answered 8.87 questions correctly with the structural model versus 4.87
for the sequential model. Even if unanswered questions are assumed correct
for only the sequential simulator, almost all subjects still answered more ques-
tions correctly with the structural model. The only subjects who did better with
the sequential simulator, under these circumstances, were subjects S8 and S20.
Subject S20 simply failed to respond to 7 out of 10 of the questions for the se-
quential simulator. S8 spent an unusually long time on the control questions
and thus did not have time to answer any questions regarding the sequential
simulator. In fact, S8 only completed the first two parts of the first noncontrol
question for the structural model and no questions for the sequential simulator.
Clearly subject S8 is an outlier.

If subject S8 is excluded from the data, we see that, on average, 9.23 questions
were answered correctly for the structural model versus 5.09 for the sequential
simulator. Even when unanswered questions are assumed correct for the se-
quential simulator and incorrect for the structural model, the structural model
still had 9.23 correctly answered questions versus 6.73 for the sequential sim-
ulator. The only subject who actually answered more questions correctly for
the sequential simulator was subject S18. The best explanation for this is that
S18 was extremely familiar with sim-outorder.c. The model that the subject
examined was the stock sim-outorder.c model and, the subject took very lit-
tle time to answer the sequential questions. An interesting experiment would
have been to test S18 on a modified version of the sim-outorder.c models, but
a retest was not possible.

Figure 2(b) summarizes the time taken to answer each class of questions:
control questions, questions for the structural model, and questions for the se-
quential model. With S8 excluded, the average time taken per question for the
structural model was greater by about 10 min when compared to the time for
questions about the sequential simulator. Some of this gap is due to the fact
that some subjects did not complete all the sequential simulator questions, and
the time taken for unanswered questions did not count toward the average. De-
spite this, the increased number of correct responses for the structural model
was not likely due to the extra time spent on those questions; many of the total
times are well below the 90-min time limit. One conclusion to be drawn from
the timing data is that the sequential simulator is extremely misleading. Sub-
jects voluntarily spent less time answering the sequential simulator questions
despite plenty of extra time. Presumably, this was due to their confidence in
their rapid analysis. Yet the subjects frequently mischaracterized properties of
the machine modeled. Timing data for subject S3 was unavailable because the
subject failed to record the data during the examination.

Note that the experiment was skewed in favor of the sequential simulator.
First, subjects were asked the LSE question immediately before being asked
the same question for the sequential simulator. Thus subjects could use the
hardware-like model to understand what to look for in the sequential simula-
tor. Second, many of the subjects were familiar with the stock sim-outorder.c

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

222 • M. Vachharajani et al.

simulator. Third, all subjects had many years of experience using the C lan-
guage (the language used for sim-outorder.c) and less than a week of expe-
rience with LSE (the tool used to build the structural model). Fourth, no sub-
ject had ever seen a full LSE processor model before the experiment. Finally,
the testing environment did not permit subjects to use the LSE visualization
tool [Blome et al. 2003] to graphically view block diagrams of the structural
specification. Experience indicates that this tool significantly simplifies model
understanding; subject responses to the questions indicated that much of their
time answering questions about the structural model was spent drawing block
diagrams. Despite all this, the results clearly indicate that sequential simula-
tors are significantly more difficult to understand.

2.3 Reuse and the Mapping Problem

A tempting approach to allow rapid construction of simulation models in the
face of the previously described difficulties is to amortize the cost of model
construction via whole-model reuse. In this approach, a sequential simulator
is built once, validated versus a “golden” reference, such as real hardware, and
then modified to model a new design. Since the new model is a modification of a
validated model, the belief is that the likelihood of error is reduced and modeling
efficiency is increased. However, this is not the case. Sequential simulators are
not only difficult to build and understand, but also difficult to modify correctly.

To see why these simulators are difficult to modify correctly, consider a
simulator, written in the same style as the one in Figure 1, which models
a machine that uses Tomasulo’s dynamic scheduling algorithm. Figure 3(a)
presents a block diagram of such a machine, and Figure 3(b) shows the code
for the writeback stage of the pipeline. The code iterates over all instructions
that have completed execution and updates the dependency information of in-
structions pending execution. While the code seems to model the hardware
reasonably well, closer examination reveals that this machine has unrestricted
writeback bandwidth; any instruction that has completed execution will be
written back.

Limiting the writeback bandwidth seems simple. One need only modify the
loop termination condition to cause the loop to exit if the writeback band-
width has been exceeded. Figure 3(d) shows this modified code. Careful inspec-
tion, however, reveals that this one line code modification has had unexpected
results. The functional units which will be able to successfully write back
results to the writeback buses is determined by the order that the while
loop (line 1 in Figure 3(d)) processes the requests. Thus, as shown in Fig-
ure 3(c), the sequential semantics of the programming language used during
modeling has implicitly introduced a bus arbiter that is not explicitly modeled
by the code.

Worse still, the arbiter’s exact functionality depends on simulator state that
does not correspond to any microarchitectural state. The order in which the sim-
ulator iterates over the instructions in the while loop determines which instruc-
tions are written back. Prior to this modification, the iteration order was irrele-
vant. Now the iteration order determines the behavior of the microarchitecture

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 223

Fig. 3. The structure and pseudocode for two Tomasulo-style machines.

and this order is not necessarily determined in any one place in the simulator’s
code. For example, the iteration order can be affected by the order in which
functional units are processed (which is often arbitrary) or the specific imple-
mentation of the data structure used to store the instructions waiting to write
back. Thus, this small change breaks the encapsulation of the writeback stage
allowing seemingly irrelevant implementation details to affect simulation re-
sults.

2.4 Reuse and the Mapping Problem: Simulator Modification Time

To show that correctly modifying a sequential simulator is unnecessarily diffi-
cult and time-consuming, an experiment that gauges how rapidly an existing
simulator could be correctly modified was conducted. Specifically, a subject was
asked to perform various modifications to a sequential simulator and to an
equivalent model whose specification more closely resembles hardware. The
requested modifications are shown in Table II. The sequential simulator mod-
ified by the subject was the SimpleScalar 3.0 sim-outorder.c simulator. The
model that more closely resembles hardware was once again built with the Lib-
erty Simulation Environment. The base LSE model and the base sim-outorder
simulator3 that were modified in the experiment had exactly matching pipeline
traces. At the time this experiment was conducted, the subject had little

3The base sim-outorder.c model had a few patches applied to fix bugs in the stock model.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

224 • M. Vachharajani et al.

Table II. Descriptions of the Modeled Microarchitectural Variants

Configuration Name Configuration Description

mispred imm Force all branches to resolve immediately in the writeback stage

mispred old Force all branches to resolve in order in the writeback stage

mispred com Force all branches to resolve in order in the commit stage

delaydec Place one cycle of delay after decode

splitda Split the decode stage into decode and register rename

splitruu Split the issue window from the reorder buffer (split RUU into 2 modules)

Table III. Time Spent and Code Changed for Modifications from the Baseline Configuration

LSE Model Sequential Model

Configuration diff/wc Modules Affected Time diff/wc Functions Affected Time

mispred imm 146 8 1.5hrs 400 16 5 hrs

mispred old 165 9 45 min 413 16 1.5 hrs

mispred com 177 10 15 min 629 17 15 min

delaydec 16 1 15 min 94 6 2 hrs

splitda 124 5 40 min N/A N/A >5 hrs

splitruu 13 1 36 min 50 7 3 hrs

experience with both LSE and SimpleScalar. To ensure correctness of the
modified models, each pair of modified models’ output was carefully checked
by hand and against each other. The subject had to resolve any discrepancies
between pipeline traces generated by the two models.

In order to evaluate how difficult it was to correctly modify the sequential
simulator, three metrics were used to compare the sequential model to the LSE
model. The first metric, the diff/wc metric, measured how much a specification
deviated from the base specification by counting the number of lines in a diff
between the original and modified configuration. The second metric captured
the locality of the changes necessary to move from an initial architectural model
to a modified one. Since the specifications of the two simulators being compared
were different, a hand count of the number of components affected in the LSE
model was compared to a hand count of the number of C functions modified
for SimpleScalar. The final metric used was a timing of how long each par-
ticular modification took. Any time required to resolve discrepancies between
the output of two models was charged to the model that was deemed to be
incorrect.

The results of the experiment are summarized in Table III. Note that the
splitda modification could not be completed in the sequential model in under
5 h and was abandoned. Across the board, it took less time and fewer modifi-
cations to build the LSE model when compared to the hand-coded sequential C
simulator. Furthermore, the changes were more local in the LSE specification
than they were in SimpleScalar. These results clearly indicate that sequential
models are unnecessarily time-consuming to modify given that the LSE models
can be used to automatically generate simulators. Note that in each case where
there was a discrepancy, inspection revealed that the sequential model was the
one that contained the error. This lends support to the claim that sequential
simulator construction and modification are error-prone.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 225

2.5 Prognosis

The examples and data presented demonstrate that manually mapping a con-
current, structural microarchitecture to a correct sequential program can be
quite difficult. Others have noted that there is a problem with the accuracy of
simulators, but disagree on the source of the problems [Desikan et al. 2001; Cain
et al. 2002; Gibson et al. 2000]. We contend that the mapping problem is the
fundamental cause of inaccuracies in and long development times of sequential
simulators.

While validation may seem like an attractive solution to the problem of
sequential simulator accuracy, validating a sequential simulator will further
lengthen simulator development times. Furthermore, for a novel design, it is
difficult to determine if a simulator is correct since no “golden” reference exists
and the simulator is difficult to understand.

Unfortunately, no obvious technique to rapidly hand-craft correct sequen-
tial simulators has been proposed to date. A number of authors have pro-
posed architecture description languages (ADLs) as an alternative means of
modeling [Halambi et al. 1999; Pees et al. 1999; Siska 1998]. Unfortunately,
these languages can only be used for processor modeling, and even within
that domain the tools are generally inadequate. The systems either suffer
from the mapping problem or limit the class of processors that can be modeled
[Vachharajani et al. 2002].

Fortunately, the intuition and the results from the presented experi-
ments indicate that models designed using a general-purpose methodology
which allows structurally composed concurrently executing components can
prove effective. However, some structural systems [Emer et al. 2002] still
force functional composition for some intercomponent computation, while oth-
ers [Önder and Gupta 1998; Mishra et al. 2001] suffer from limited models of
concurrency [Vachharajani et al. 2002]. In other systems, building a component,
validating it, and reusing it across many designs is a possibility. This improves
both the speed of model construction and reduces sources of error. In the next
few sections, existing modeling tools that use concurrency and structural com-
position will be surveyed and analyzed in order to determine how effectively
their features support the creation and use of reusable components.

3. EXISTING TRUE CONCURRENT-STRUCTURAL APPROACHES

From the previous section, it is clear that a simulation system that avoids the
mapping problem must be fully concurrent and support structural composition.
This way the modeling methodology itself does not prevent the construction and
use of reusable components. In practice, however, it is insufficient to simply
not prevent component-based reuse; high-level concurrent-structural modeling
systems need to possess certain capabilities which enable component-based
reuse [Swamy et al. 1995]. These capabilities include the following:

—Parameters. The ability to customize component properties with user-
specified values:
—Structural parameters: the ability to customize hierarchical structure with

parameters. This allows existing components to be reused hierarchically

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

226 • M. Vachharajani et al.

Table IV. Capabilities of Existing Methods and Systems

Concurrent-Structural

Static Structural OOP

Capability Theory Practice Theory Practice

Parameters Yes Yes Yes Yes

—Structural Yes Yes

—Algorithmic Yes Yes Yes Yes

Polymorphism Yes Yes Yes Yes

—Parametric Yes Yes Yes

—Overloading Yes Yes

Static analysis Yes Yes

Instrumentation Yes Yes

to create a flexible component. Example: parameters controlling the mix
of functional units and presence of bypass connections in a structurally
specified reusable CPU core:

—Algorithmic parameters: the ability to inherit and augment the behavior of
an existing component with an algorithm. Example: parameter specifying
arbitration logic inside a bus arbiter component:

—Polymorphism. the ability to support reuse across varying data types:
—Parametric polymorphism: the ability to create and use component models

in a data type independent fashion. Examples: queues, memories, and
crossbar switches that can store or process any data type.

—Component overloading: the ability to select different component imple-
mentations to match different data types. Note that function overloading,
in which argument types select a function’s implementation, differs from
component overloading, where port and connection types select a com-
ponent’s implementation. Example: automatic selection between floating
point ALU implementation and integer ALU implementation based on
connection data types.

—Static analysis. The ability to analyze the resulting concurrent-structural
model for user convenience, verification, and simulator optimization. Exam-
ple: type inference to automatically resolve polymorphic port types.

—Instrumentation. The ability to probe a model for dynamic behavior without
modifying the internals of any component. This allows reuse across different
model objectives. Examples: data collection, debugging, and visualization.

The following two subsections relate the above abilities to two existing model-
ing methodologies: static structural modeling and modeling with a concurrent-
structural library in an object-oriented programming (OOP) language. These
systems are true concurrent-structural systems and thus do not suffer from the
mapping problem. The analysis in this section will identify which of the above
capabilities are supported in each of these methods and also highlight potential
pitfalls present in these methods. The insight gained will guide the design of
the Liberty Simulation Environment and its modeling language, the Liberty
Structural Specification (LSS) language. Table IV can be used as a reference
during the discussion.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 227

Fig. 4. Block diagrams of chained delay components.

3.1 Static Structural Modeling

Static structural modeling systems are concurrent-structural modeling systems
that statically describe a model’s overall structure. Models in these systems
often resemble netlists of interconnected components, and typically these tools
have drag-and-drop graphical user interfaces to construct models. Examples of
such tools are Ptolemy II with the Vergil interface [Janneck et al. 2001] and
HASE [Coe et al. 1998].

These systems support many of the features described above. Components
typically export parameters so that they can be customized. Depending on the
underlying language used to implement the components, a mechanism may ex-
ist to support algorithmic parameters via inheritance. Some systems support
polymorphism [Janneck et al. 2001] and type inference to resolve the poly-
morphic types [Xiong 2002]. Models could even be instrumented using aspect-
oriented programming (AOP) [Kiczales et al. 1997] to weave instrumentation
code into the structure of the described model.

Unfortunately, the fact that these specifications are static implies a funda-
mental limitation of static structural modeling systems. Consider the structure
shown in Figure 4(a). In static structural systems, one would explicitly in-
stantiate the three blocks within the dotted box in the figure. However, this
chain of blocks could not be wrapped into a flexible hierarchical component,
as shown in Figure 4(b), where the length of the chain is a parameter since
static structural systems provide no mechanism to iteratively connect the
output of one block to the input of the next a parametric number of times. As
a result, to permit flexibility, this simple hierarchical design would have to be
discarded in favor of a more complex implementation of a primitive component
implemented using a sequential programming language. Implementing the
primitive component for this simple example may not be difficult, but more

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

228 • M. Vachharajani et al.

complex examples, such as parametrically controlling the mix of functional
units in a processor model, would require implementing a monolithic primitive
processor component. This is tantamount to writing the whole simulator in a
sequential programming language. Note that some static structural modeling
systems may provide idioms for common patterns, such as chained connec-
tions. However, the fundamental lack of general mechanisms to parametrically
and programmatically control model structure still remains. This deficiency
ultimately restricts the flexibility of components built hierarchically and forces
users to build large primitive components.

3.2 Modeling with Concurrent-Structural Libraries in OOP

A promising concurrent-structural modeling approach, such as the one taken by
SystemC [Open SystemC Initiative (OSCI) 2001], which allows flexible primi-
tive and hierarchical components, is to augment an existing OOP language with
concurrency and a class library to support structural entities such as ports and
connections. Objects take the place of components, and simulator structure is
created at run-time by code that instantiates and connects these objects.

The basic features of object-oriented languages provide many of the capabil-
ities described above. Object behavior can be customized via instantiation pa-
rameters passed to class constructors. Algorithmic parameters are supported
via class inheritance. If the particular OOP language and the added structural
entities support parametric polymorphism, then type-neutral components can
be modeled as well.

Since component instantiation and connection occur at run-time, the OOP
language’s basic control flow primitives (i.e., loops, if statements, etc.) can be
used to algorithmically build the structure of the system. This code can be en-
capsulated into an object and the internal structure can be easily controlled
by structural parameters thus producing flexible hierarchical components.
For example, the n-cycle delay component (Figure 4(b)) seen in the last sec-
tion could be built by composing n single-cycle delay components as shown in
the pseudocode in Figure 5.

Unfortunately, run-time composition of structure provides component flex-
ibility by precluding static analysis of model structure. This makes using
these flexible components cumbersome. For example, any parametric polymor-
phism must be resolved via explicit type instantiation by the user, since the
constraints used in type inference are obtained from the model’s structure,
which is unavailable at compile time. Ideally connecting the output of a float-
ing point register file to an overloaded ALU should automatically select the
ALU implementation that handles floating point data. However, this compo-
nent overloading is not possible since the user must codify the particular ALU
implementation in the instantiation statement rather than the compiler au-
tomatically determining this based on connectivity. Additionally, all compo-
nent parameters, particularly those that control structure, must be explicitly
specified by the user since the compiler is unable to automatically infer these
values by analyzing the structure of the machine statically. Finally, imple-
menting instrumentation that is orthogonal to machine specification is at best

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 229

Fig. 5. Concurrent-structural OOP pseudocode for an n-stage delay chain.

cumbersome. Powerful techniques such as aspect-oriented programming can-
not be used since the desired join points (locations where instrumentation code
should be inserted) are often parts of the model structure that is not known until
run-time.

In addition to burdening the user, the lack of static analysis prevents certain
key optimizations that can increase simulator performance. Existing optimiza-
tions can provide as much as a 40% increase in simulator performance [Penry
and August 2003], eliminating performance loss due to reuse, and future op-
timizations will enable parallel execution of simulators for further speed en-
hancement. These optimizations rely on static analysis of machine structure
and thus are unavailable when run-time composition of structure is used. In
practice, simulator performance penalties combined with reuse burdens en-
courage users to build design-specific components that are fast and easy to use
but enjoy little to no reuse due to their inflexibility.

3.3 Mixed Approaches

A few approaches share some features of static structural models and some
features of concurrent-structural OOP-based modeling. For example, VHDL al-
lows limited algorithmic specification of structure via its generate statements
and supports static analysis but does not support any of the other needed capa-
bilities such as polymorphism and algorithmic parameters. The Balboa [Doucet
et al. 2002] modeling environment supports algorithmic specification and com-
ponent overloading by running type inference at run-time. However, Balboa and
its type inference algorithm do not support parametric polymorphism [Doucet
et al. 2003]. As we will see in the next section, the Liberty Simulation Environ-
ment gains, in practice, the full benefits of both static structural modeling and
concurrent-structural OOP modeling.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

230 • M. Vachharajani et al.

3.4 Control Abstraction

Up to this point, this section focused on identifying the reuse-enabling features
present in existing systems. However, facilitating rapid accurate modeling re-
quires that a system also provide mechanisms for simplifying parts of a design
that do not benefit from reuse. As was mentioned earlier, the global nature of
control in a hardware design makes the components that manage control un-
likely candidates for reuse. Existing systems, in addition to lacking some fea-
tures to enable low-overhead reuse, also lack abstractions to simplify the task
of describing control. Since the majority of components in these systems are
not reused, having abstractions to reduce control specification overhead seems
unnecessary; implementing components from scratch is the norm. Conversely,
since components built in the Liberty Simulation Environment are reusable,
the need for control abstraction becomes more apparent. Section 6 will discuss
the abstraction used in LSE.

4. THE LIBERTY SIMULATION ENVIRONMENT

LSE is a fully concurrent-structural modeling framework designed to max-
imize reusability of components while minimizing specification overhead. A
user models a machine in LSE by writing a machine description in the Lib-
erty Structural Specification language. This description specifies the instantia-
tion of components, the customization of the flexible reusable components, and
the interconnection of component ports. LSE includes a simulator generator
that transforms this concurrent-structural machine description into an exe-
cutable simulator and additional tool chains for other purposes, such as model
visualization.

To avoid the mapping problem, LSE only allows components to communi-
cate structurally, but this structure, along with component customizations,
can be specified algorithmically via imperative programming constructs. Us-
ing these constructs, a model’s structure can be built using code similar to the
concurrent-structural OOP code shown in Figure 5. However, unlike modeling
in concurrent-structural OOP, the LSS code only describes the model’s structure
and not its run-time behavior. Thus, as shown in Figure 6, the LSS description
can be executed at compile time to generate the system’s static structure. This
allows model structure to be used for compile-time static analysis. Currently,
LSE analyzes this structure to reduce specification overhead [Vachharajani
et al. 2004a, 2004b] and to optimize the built simulator performance [Penry
and August 2003].

Each component in a model built using LSE is instantiated from a component
template, called a module, that is analogous to a class in a concurrent-structural
OOP system. The body of an LSS module specifies a component’s parameteriza-
tion interface, communication interface, and constructor. There are two types
of modules in LSS. The first, leaf modules, are simple modules defined without
composing behavior from other modules. The other style, hierarchical modules,
are more complex modules obtaining their behavior through the composition
and customization of existing modules. The next two sections will describe leaf
and hierarchical modules and their parameterization.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 231

Fig. 6. Overview of the simulator generation process in LSE.

Fig. 7. Delay element declaration and use.

4.1 Leaf Modules

Leaf modules are simple modules whose behavior is externally specified.
The module declaration is responsible for declaring the parameterization and
communication interface of the module and for specifying where the module’s
behavior can be found. Figure 7(a) shows the declaration of a leaf module named
delay. Line 2 in the figure declares a module parameter named initial state
with type int and assigns the parameter a default value of 0. Lines 4 and 5
illustrate defining the communication interface of the module. These two lines
define an input port named in and an output port named out, respectively, both
with type int. Line 7 specifies where the code defining the run-time behavior
of instances of this module can be found.

The code which defines a leaf module’s behavior is not written in LSS, but a
separate behavior specification language (BSL).4 A leaf module’s behavior code
specifies how values arriving on input ports are combined with internal state to
produce values on the instance’s output ports. The module behavior code uses

4Currently, LSE uses a stylized version of C as the BSL, but the LSS language and the techniques

presented in this article are not dependent on the specific BSL used.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

232 • M. Vachharajani et al.

Fig. 8. Hierarchical component composition.

the user specified values of module parameters to customize the behavior of a
particular instance.

Figure 7(b) shows an example of instantiating and parameterizing the delay
module. Lines 1 and 2 each instantiate the delay module to create module
instances named d1 and d2, respectively. Line 4 gives the initial state pa-
rameter on instance d1 the value 1. Line 5 connects the output of d1 to the
input of d2. Notice that the initial state parameter on instance d2 is not set.
When such assignments are omitted, the parameter takes on its default value
as defined in the module body (line 2 of Figure 7(a)).

Notice from the example that parameters in LSS are referenced nominally
and can be specified after the instantiation statement (e.g., initial state is
referenced on line 4 of Figure 7(b)) rather than in an a positional argument list
as part of the instantiation statement. These choices were made because flex-
ible modules typically have many parameters. Nominal parameter references
clarify models since parameter names describe the parameter’s purpose better
than position in an argument list. Similarly, flexible placement of parameter
assignment allows groups of related parameter assignments for different mod-
ule instances to be co-located rather than scattered based on where modules
are instantiated. Both features make using flexible components (i.e., those with
many parameters) easier, encouraging their construction and use.

4.2 Hierarchical Modules

In addition to leaf modules, LSS supports the creation of complex modules by
composing the behavior of existing modules into new hierarchical modules.
Hierarchical modules, just like leaf modules, define a parameterization and
communication interface by declaring ports and parameters. However, unlike
leaf modules, the behavior of the module is specified by instantiating modules
and connecting these sub-instances to the new module’s input and output ports
(see Figure 8). These module subinstances execute concurrently and define the
hierarchical module’s behavior.

5. LOW-OVERHEAD REUSE IN LSE

This section gives an overview of LSE’s features that allow for easy reuse of
flexible components. When discussing LSE features, the text highlights chal-
lenges in the features’ implementation. The details about technology developed
to address these challenges is discussed in the literature [Vachharajani et al.
2004a, 2004b].

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 233

Fig. 9. n-stage delay chain declaration and use.

5.1 Structural Parameters

Recall from Section 3 that, to fully enable reuse, a modeling system needs to
support parameters that control the structure of hierarchical modules. LSS
allows the use of imperative control flow constructs to guide the subcomponent
instantiation, parameterization, and connection. Any parameter can be used to
control these constructs; therefore all LSS parameters can be used as structural
parameters.

To see how a parameter can be used to control structure, consider the LSS
code shown in Figure 9(a). This code defines a module that models an arbitrary
depth delay pipeline (Figure 4(b)) built using single-cycle delay modules. The
module delayn declares a single parameter n (line 2) which controls the number
of stages in the pipeline. Anywhere after this declaration, the body of the module
can read this parameter to guide how subinstances will be created, connected,
or parameterized.

Lines 7 and 8 create an array of instances of the delay module that will
be named delays in the BSL. Notice that the length of the array (the value
enclosed in brackets on Line 8 of the figure) is controlled by the parameter n.

Lines 12 through 16 connect the delay instances in a chain as shown in
Figure 4(b). Notice how the general purpose C-like for-loop causes the length
of the connection chain to vary with the parameter n.

Figure 9(b) shows how the delayn module can be used to create a three-stage
delay pipeline. The module is instantiated on line 3, its n parameter is set on
line 5, and finally the instance is connected on lines 7 and 8. The block diagram
of the resulting system is the same as in Figure 4(a).

5.2 Extending Component Behavior

Section 3 also stated that a system that supports reuse must support algorith-
mic parameters to allow an existing component’s behavior to be extended or
augmented. In LSE, these algorithmic parameters are called userpoints. User-
points accept string values whose content is BSL code that forms the body of

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

234 • M. Vachharajani et al.

a function invoked by a module’s behavioral specification to accomplish some
computation or state-update task. The function signature, the arguments it
receives and the return type it must produce, is defined by the data type of
the userpoint. Just like other parameters, userpoint parameters can have de-
fault values, thus allowing the module to define default behavior which can be
overridden by the user.

In concurrent-structural OOP systems, inheritance takes the place of al-
gorithmic parameters. Just like algorithmic parameters, inheritance allows a
component’s behavior to be modified or extended. However, a single userpoint
parameter assignment on a module instance is the concurrent-structural OOP
equivalent of inheriting a class, overriding a virtual member function, and then
instantiating the inherited class. Thus userpoints dramatically reduce the over-
head of one-off inheritance (i.e., inheriting a module and instantiating it once).
Since one-off inheritance is common in structural modeling, using userpoints
rather than inheritance reduces specification overhead. More formal styles of
inheritance can be achieved via userpoint assignment and hierarchical module
construction.

To allow userpoints to maintain state across multiple invocations, LSS also
allows the state of a module instance to be extended. State is added by declaring
run-time variables (i.e., variables available during simulation rather than dur-
ing model compilation). To allow this state to be initialized and synchronously
updated, LSE provides on every instance the predefined userpoints init and
end of timestep, which are invoked at the beginning of simulation and the end
of each clock cycle, respectively.5

5.3 Flexible Interface Definition

To maximize the flexibility of components, LSS extends parametric control of
structure to include parametric control of interfaces as well. A common use of
this facility is parametric control of interface size, such as the number of read
ports on a register file. However, as will be seen, this customization can control
any portion of the module’s interface.

5.3.1 Flexible Interface Size. To facilitate scalable interfaces such as a reg-
ister file with a customizable number of read ports, each port in LSS is ac-
tually a variable length array of port instances. Rather than connecting two
ports together to have two instances communicate, one connects two port in-
stances together. For each port in a module, the port’s width (the number of
connections made to the port) is available as a parameter for use in a module’s
body. These width parameters are automatically set by counting the number
of connections actually made to a particular port. This automatic inference of
port width greatly simplifies specifications. Without this inference, users would
have to manually keep the width parameters consistent with the connections.
This process would be prone to error, and fixing the errors would be tedious,
time-consuming, and unnecessary.

5These userpoints are altered when modeling multiple clock domains in LSE.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 235

Fig. 10. Modified delayn module and a sample use.

Figure 10 illustrates how one would use these scalable interfaces to build a
hierarchical module, and it also demonstrates how a port’s width parameter is
automatically set. Recall the delayn module presented in Figure 9. While the
delay module (which was used to build the delayn module) supports multiple
connections to its in and out ports, the delayn module internally connects only
one port instance to the chain of delay modules. If a connection were made to
more than one port instance of either port on the delayn module, it would be
ignored since it is internally unconnected.

Figure 10(a) shows the delayn module extended to support connections to
multiple port instances, and Figure 10(b) shows a sample use of the mod-
ule. Notice that many connections are now made from the the in port to
the head of the delay chain (line 19 of Figure 10(a)), between delay elements
in the chain (lines 22–23), and finally from the tail of the chain to the out
port (line 25). Further, notice that the number of connections made is con-
trolled by the parameter in.width, yet this parameter has no explicit default
value or user assignment. Instead, its value is inferred by the system based on
the number of connections made. In this example, since five connections are
made to the in port (lines 7–8 of Figure 10(b)), the parameter would have the
value 5.

5.3.2 Parameterized Interface Definition. The inference of the width pa-
rameter described above is an example of an LSS feature called use-based
specialization. This feature allows a module’s context (its parametericity and
connectivity) to alter its behavior and its interface. In the above example, only
the widths of ports were varied, but use-based specialization can be used to

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

236 • M. Vachharajani et al.

Fig. 11. Use-based specialization exporting additional parameters.

alter any piece of the a module’s interface. For example, by detecting whether a
branch target port is connected, a branch prediction module can infer whether
or not it should also implement BTB (branch target buffer) functionality. If BTB
functionality is necessary, the component can export additional parameters and
ports to further customize this behavior.

To see how use-based specialization can affect a hierarchical component’s
interface and structure, consider the code in Figure 11. Here the module infers
whether an internal arbiter is necessary by comparing the width of its input
port to that of its output port. If the input port is wider than the output port,
an arbiter is instantiated, and a userpoint parameter is exported so that the
arbitration policy can be parametrically specified.

Notice that the module’s interface can change after it has been instanti-
ated and used. In the example, the module’s connectivity, which is determined
after instantiation, controls whether the module will have a certain parame-
ter. Without use-based specialization, the module’s interface would be fixed at
instantiation, and the arbitration policy parameter would always exist. If
the parameter has no default value, then the user would be forced to set it,
even when no arbitration is necessary. Alternatively, the parameter could be
assigned a default value. However, since there are many possible default arbi-
tration policies, having the module quietly make this important design decision
when widths are changed is undesirable. While this is less severe than the prob-
lem illustrated in Figure 3 since the arbiter is explicitly created and its behavior
determined only by microarchitectural state, a design decision is nonetheless
being made without user knowledge. Use-based specialization makes deciding
whether the parameter ought to have a default value unnecessary by providing
the best of both worlds; the user must provide the policy when it is necessary
and is not forced to provide it when it is not.

While use-based specialization reduces the overhead of using flexible compo-
nents by automatically tailoring components to their environment, it introduces
complications into the execution of LSS. Since a module’s parameterization and
connectivity can affect its interface, the module’s interface is not known until
after its parameters have been set and its ports connected. However, this param-
eterization and connection relies on the interface being known. To resolve this
apparent circularity, LSS uses novel evaluation semantics that are described
in the literature [Vachharajani et al. 2004a].

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 237

5.4 Polymorphic Interfaces

In addition to flexible interface definitions, LSE also supports modules with
polymorphic interfaces. LSS supports two types of polymorphism: parametric
polymorphism and component overloading.

5.4.1 Parametric Polymorphism. Parametric polymorphism allows for the
creation of data type independent components. This feature is particularly use-
ful for reusable communication primitives like routers, arbiters, and filters, and
for reusable state elements like buffers, queues, and memories.

As an example, recall the delayn module shown in Figure 9(a). As shown, the
delaynmodule can only handle the intdata type since the ports are created with
type int (lines 4 and 5 in Figure 9(a)). However, the behavior of the module,
creating a delay pipeline that is n stages deep, is independent of data type.
Consequently, the delayn module is an ideal candidate for using parametric
polymorphism. To make the module parametrically polymorphic, rather than
making the in and out ports have the data type int, one would declare the
ports’ types using type variables as shown below:

4 inport in:′a;
5 outport out:′a;

The type ′a is a type variable (all type variables in LSS begin with a ’)
which can be instantiated with any LSS type. This flexibility makes the modi-
fied delayn module data-type-independent.6 Since the in and out ports use the
same type variable, both ports must have the same concrete type. This guar-
antees that the type of data entering the delay pipeline is consistent with the
type of data that comes out. While this example demonstrates parametric poly-
morphism on a hierarchical component, it can also be used on leaf components.
In such cases, the BSL code for the leaf component is specialized based on the
concrete type given to all type variables.

5.4.2 Component Overloading. Component overloading is useful when
defining a component that supports more than one data type on a particu-
lar port, but needs to be customized based on which type is actually used.
Component overloading is supported with disjunctive types. A disjunctive type,
denoted as type1 | type2 in LSS, specifies that the entity with this type may
statically have type type1 or type2, but not both simultaneously.7 Depending
on which type is actually selected, a different module implementation will be
selected.

As an example of component overloading, consider trying to build an ALU
component that could be used as either an integer ALU or a floating-point
ALU depending on how it is instantiated. The interface for such an overloaded
ALU component is shown in Figure 12. Each port of the ALU is defined using the

6This modification to delayn assumes that the delay module also uses parametric polymorphism.

The delay module defined in the LSE core module library does, in fact, support this.
7Note that the disjunctive type is different from union types in other programming languages.

Union types dynamically store data of any of the enumerated types rather than data of a single,

statically selected type.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

238 • M. Vachharajani et al.

Fig. 12. An overloaded ALU module interface.

disjunctive type int | float (lines 2, 3, and 5 of Figure 12). Lines 7 and 8 in this
example force all the ports of the component to have the same type (′′in1, ′′in2,
and ′′result are type variables corresponding to the types of their respective
ports). Depending on the type selected, the appropriate ALU behavior (integer
or floating point) will be used when this ALU is instantiated.

Since modules may define multiple ports with disjunctive types, and not
all ports with disjunctive types will be constrained to be equal, a naïve im-
plementation of component overloading would require implementing the full
cross-product of allowable overloaded configurations for a particular overloaded
module. Creating all these implementations for a module with many overloaded
ports may be extremely cumbersome. However, since in LSE the types are
resolved statically, rather than implementing multiple entire behaviors for a
given component, the BSL can specify type-dependent code fragments. The
code generator can customize this code using the statically resolved type infor-
mation, and then combine it with a module’s type-independent code.

5.4.3 Type Inference. In order to reduce the designer’s overhead in us-
ing polymorphic components, polymorphism in LSS is resolved via type in-
ference based on the structure of the model. For example, if the in port of
the polymorphic delayn module constructed above were connected to a mod-
ule which outputs values of type int, the type variable ′a would be resolved to
have type int. Due to the presence of disjunctive types, however, implementing
this inference is not straightforward. Algorithms found in the literature are not
appropriate to solve the LSS type inference problem. The problem is also NP-
complete which suggests that it may be prohibitively expensive to implement.
Fortunately, LSS uses a heuristic inference algorithm that keeps compile times
reasonable. Details regarding the LSS type inference problem, a proof of its
NP-completeness, and details of the heuristic type-inference algorithm can be
found in the literature [Vachharajani et al. 2004a].

5.5 Instrumentation

To separate model specification from model instrumentation, as was possible
in static structural modeling, LSE supports an aspect-oriented data collec-
tion scheme. Each module can declare that its instances emit certain events
at run-time. These events behave like join points in aspect-oriented program-
ming (AOP) [Kiczales et al. 1997]. Each time a certain state is reached or a
certain value computed, the instance will emit the corresponding event. User-
defined collectors fill these join points and collect information for statistics

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 239

Fig. 13. An LSE specification of the writeback stage of the machine shown in Figure 3, with an

additional connection from the ALU to the LSU.

calculation and reporting. BSL code may be specified for the collector that pro-
cesses the data sent with the event to accumulate statistics, to allow model
debugging, and to drive visualization.

In addition to defined events, LSS automatically adds an event for each port.
This event is emitted each time a value is sent to the port. Since important hard-
ware events are often synchronized with communication, many useful statistics
can be gathered using just these port firing events.

5.6 Putting It All Together

Figure 13 shows a sample LSS description of the writeback stage of the machine
shown in Figure 3(c) with an additional connection directly from the ALU to the
load-store unit (LSU). The primary module in the writeback stage is the com-
mon data bus arbiter, instantiated on line 5 in the figure. For reasons discussed
in Section 6, connections in LSE are always point-to-point. Thus, two tee mod-
ules need to be instantiated (lines 6 and 7) to handle the common data bus net
and the ALU output net because these nets must fan out. Lines 17–30 connect
the various ports on the modules to the appropriate ports on other modules.
Notice how the variable sizing of the port interface is used to allow the arbiter
module instance to accept an arbitrary number of inputs and the tee instances
to fan out an arbitrary number of signals. Internal widths for the arbiter’s ports
are inferred based on these connections by LSE.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

240 • M. Vachharajani et al.

Fig. 14. Screenshot of the LSE Visualizer showing the model from Figure 13.

LSE’s userpoint parameters are used in the above example to set the arbi-
tration strategy that the bus arbiter instance will use to arbitrate the common
data bus. The standard arbiter module in the library does pairwise arbitration,
and thus we need only provide a function to arbitrate between a pair of inputs
(lines 9–14). Note that the standard arbiter and teemodule will work with any
type, since they are polymorphic. The types are resolved automatically based
on the types of the ALUs and other connected components.

Clearly, this LSE description directly corresponds to the structure of the
hardware in terms of hardware blocks and interconnections. Since the LSS
language is evaluated at compile time, the structure of the described machine
can be visualized in a graphical tool, as shown in Figure 14, and can be
analyzed so that the generated simulators may be optimized [Penry and
August 2003]. Note that this description is constructed using only components
from the LSE standard module library, highlighting the utility and reusability
of the standard components.

Figure 15 illustrates module extension mechanisms with modifications to
this model. Suppose that a round-robin arbitration policy was needed in the
example instead of the shown priority arbitration scheme. A round-robin arbi-
tration policy requires that the arbiter alternate which input has the highest
priority. To store which input currently has highest priority, the bus arbiter
instance needs to be augmented with additional state.

On line 1 of Figure 15, an instance of a general arbitration module is created.
To customize this instance with a round-robin arbitration policy, the instance

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 241

Fig. 15. Customization of an arbiter module for round-robin arbitration.

Fig. 16. Collector to monitor bus arbiter output.

will need to have state indicating which input has the highest priority. The state
is added to the instance by creating a run-time variable. Line 2 declares an LSS
variable to hold a reference to this run-time variable and line 4 instantiates a
new integer run-time variable whose BSL name is index.

Line 6 sets the value of the init userpoint so that the index run-time variable
will be initialized to 0. The ${index} notation allows a reference to the run-time
variable to be embedded into the code quoted with the <<<. . . >>> characters.
Similarly, lines 8–10 set the value of the end of timestep userpoint so that
index will be incremented at the end of each clock cycle, wrapping around to
0 when it reaches the maximum number of inputs (which is the width of the
arbiter’s in port). Finally, the code that implements the arbitration policy is as-
signed to the comparison func userpoint on lines 12–18. The function computes
the distance of requested ports from each index, and selects the input which is
closest.

The instrumentation features of LSS can be used to emit the data transmit-
ted by the arbiter in each cycle to check if the round-robin arbitration code is
correct. A sample data collector for the output of the bus arbiter is shown in
Figure 16. The first line states that this collector should be activated any time a
signal on the out port of the bus arbiter instance is resolved. Lines 3–9 specify
a fragment of code that executes each time the event occurs. Here, the code
simply prints out the current cycle number (line 5), followed by the actual data
(lines 6–8). The code to print the common data bus (CDB) data is in the function
print cdb data. This is arbitrary code provided by the author of the model.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

242 • M. Vachharajani et al.

More information on the details of collectors, the syntax and semantics of the
LSS language, and the BSL can be found in the LSE release documentation [The
Liberty Research Group 2003].

6. CONTROL ABSTRACTION IN LSE

LSE provides a set of features to enable easy construction and use of flexi-
ble reusable components in concurrent-structural descriptions. However, even
with ideal component-based reuse, several daunting challenges still remain for
designers building and modifying hardware models. In particular, component-
based reuse does little to assist in building the components that implement
timing and stalling control logic in complex systems. The timing controller’s
correct operation is based on a global understanding of the datapath and the
way that different events in the system are correlated. For example, the pipeline
stall logic in a microprocessor is aware of structural hazards, and it stalls vari-
ous parts of the pipeline when there are insufficient resources for computation
to proceed. If any part of the datapath is changed, the controller must be al-
tered to take those changes into consideration. In general, the precise details
of why, when, and what to stall are heavily dependent on the particular design,
and even minor variations can radically affect control. The controller is con-
nected to many parts of the system, and these connections and interfaces must
be managed explicitly. This tight intertwining of control and datapath makes
creating a single, easily customized, and flexible stock component impractical
if not impossible.

Although the controller cannot be broken up into components, control can
still be separated into two parts. First, there is the portion of control that
determines when to stall. Second, there is the portion of the controller that
distributes the stall signal to all system components affected by a certain stall
condition.

The generation of stalls can be further subdivided into structural stalls
and semantic stalls. A buffer running out of space is an example of a struc-
tural stall. In this example, it is likely that all operations that require send-
ing data to the buffer in the present cycle will need to stall. Semantic stalls,
on the other hand, require understanding the overall function of the system.
For example, to generate stalls due to data hazards in a processor pipeline,
it is necessary to understand the detailed semantics of the instruction set
architecture.

Since LSE is designed as a general-purpose tool, LSE does not provide a
mechanism to specify a semantic description of the system. Therefore, little
can be done to avoid specification of semantic stalls, though additional tools
can be layered on top of LSE to provide this functionality. On the other hand,
the portions of the controller that generate structural stalls can be handled
by integrating this functionality into the components themselves. For example,
buffers are aware of when they are full, and therefore can generate stall signals
autonomously. Since the components themselves are reusable, the portion of the
control logic that generates these structural stall signals does not need to be
specified by the user of these components.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 243

Fig. 17. Connection with standard control flow semantics.

To distribute stall information, regardless of whether it is structural or se-
mantic, LSE exploits the connectivity of the components in the system. Compo-
nents that generate stalls can communicate this information to their upstream
neighbors. Those that do not need or do not generate stall information pass the
downstream information to their upstream neighbors. Asynchronous hardware
is a class of design that exploits this exact principle. Since there is no global
clock on which a global controller can synchronize in asynchronous designs,
stall information and stall signals are generated locally and then transmit-
ted back to previous stages of a pipeline. By employing a similar strategy, the
portion of global control that distributes stall information can be simplified.

Analogous to asynchronous hardware, each connection in an LSE descrip-
tion actually specifies three subconnections as shown in Figure 17: a DATA and
an ENABLE signal in the forward direction and an ACK signal in the reverse di-
rection. As its name implies, the DATA subconnection carries the data from the
sending module (Module A in the figure) to the receiving module (Module B).
The ENABLE signal, when asserted, indicates that the transmitted data should
be used to perform state update. Finally, the ACK signal indicates that the re-
ceiving component is able to accept and process the sent data.

In a typical communication, like the one shown in Figure 17, the sending
module (Module A) will send data on its output port. The receiving module
(Module B) will determine whether or not it can accept the data and generate
the corresponding ACK message. If the receiving module indicates that the data
has been accepted, then the sending module will indicate that the receiver
should use the data for state update by raising the ENABLE signal. Otherwise
the sending module will indicate that the data should not be used by lowering
the ENABLE signal. In this way, modules that cannot process a request can send a
negative acknowledgment, creating a stall. Other components in the system will
propagate this stall back along the datapath until the module that generated
the request determines how to proceed, usually by sending a disable signal and
retrying the request in the next cycle.

The three-way handshake described above can also be used to coordinate
stalls between more than just a linear chain of modules. The tee module, for
example, uses the handshake mechanism to coordinate the ACK signal of all
the downstream recipients. The tee module forwards its incoming DATA and
ENABLE signals to all its output ports, as shown in Figure 18(a). By default,
it takes the incoming ACK signal from all of its outputs, computes the logical
AND of these values, and passes that result out through the ACK wire on the
input port. With these semantics, a module connected to the input of a tee

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

244 • M. Vachharajani et al.

Fig. 18. The tee module’s control semantics options.

will only get an affirmative ACK signal if all modules downstream of the tee
can accept the data. By modifying a parameter, the tee module’s behavior can
be changed so that it computes the logical OR of the incoming ACK signals to
generate the outgoing ACK signal. This behavior is shown in Figure 18(b). With
these new semantics, the sending module will see an affirmative ACK if any mod-
ule downstream can accept the data. Thus, using the three-way handshake, we
are able to implement useful control semantics for fan-out without difficulty.
Since control can be handled in a variety of ways during fan-out, all LSE con-
nections are point-to-point with explicit fan-out modules.

To automatically propagate stalls and automatically generate structural
stalls, modules had to make assumptions about when stalls should be
generated and how they should be propagated. While these defaults are nor-
mally correct, this is not always the case. LSE provides two mechanisms to
allow these defaults to be modified and to allow semantic stalls to be injected.

The most obvious mechanism is to insert a new module which modifies
the control signals to effect a stall. A custom module can be written from
scratch; however, the LSE standard library provides several modules that can
be used to help inject semantic stalls. These library modules accept input from
components designed to detect semantic stall conditions, and they manipulate
the control signals so that the stalls can propagate normally. While this mech-
anism is the most general, many common situations requiring only slightly
modified control can be handled by control points, the other mechanism pro-
vided by LSE.

Each port in LSE defines a control point that can optionally be filled with a
control function that modifies the behavior of the signals on the corresponding
ports. As illustrated in Figure 19, one may think of the control function as a
filter situated between a module instance and the instance’s port.

To understand how control functions can be used in practice, recall the ex-
ample from Figure 13. Assume the designers wish to use the ALU-to-LSU
connection to forward store operands to the LSU before the ALU wins arbi-
tration for the common data bus. By default, if the ALU fails to obtain the
common data bus, the arbiter will send a negative ACK to the ALU fanout tee
causing the LSU’s store operand port to receive a low ENABLE signal. This low
ENABLE will inform the LSU to ignore any data sent to its store operand port.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 245

Fig. 19. Control function overrides standard control.

We will use a control function to change the behavior so that the LSU receives
a high ENABLE signal on the store operand port any time the LSU asserts the
corresponding ACK signal.

The code shown in Figure 19 fills the control point on the LSU’s
store operand port. The control function receives the status of all signals on
the input side of the control function (to the left in the figure) in the istatus
variable, and the status of all signals on the output side in the ostatus vari-
able. The function’s return value will be used to set the DATA, ACK, and ENABLE
status on all the outgoing wires (DATA and ENABLE on the right and ACK on left
side of the control function in the figure). These statuses indicate whether or
not data is present and whether or not the ENABLE and ACK signals are asserted.
The status for each of the three signals is stored using several bits in a status
word. This particular control function passes the incoming DATA and ACK signals
straight through without modification by using the LSE signal extract data
and the LSE signal extract ack API calls, thus preserving the signals’ origi-
nal behavior. It moves the incoming ACK signal to the outgoing ENABLE wire by
using the LSE signal ack2enable API call, thus attaining the desired behavior.
From this example, we see that the control function is able to alter machine
control semantics without requiring modules to be rewritten or new modules
to be inserted.

7. EXPERIENCE WITH LSE

Up to this point, this article has described the key features of LSE that en-
able component-based reuse and rapid simulator construction. This section de-
scribes our experience with LSE’s modeling speed and presents some data that
quantifies the amount of component-based reuse we have observed.

7.1 Modeling Speed

To date, LSE has been used to model a variety of microarchitectures in
a number of research groups. Within our own group, it has been used
to model several machines including a IA64 processor core validated to
within 5.4% of hardware [Penry et al. 2005], a PowerPC processor core, chip

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

246 • M. Vachharajani et al.

Table V. Quantity of Component-Based Reuse

Model Hierarchical Leaf Instance % Instances Modules

Name Instances Modules Modules per Module from Library from Library

A 277 46 (10) 18 4.33 (8.61) 73% 13

B 281 46 (11) 18 4.39 (8.48) 73% 13

C 62 1 18 3.37 73% 10

D 192 4 25 6.62 86% 22

E 329 4 26 10.97 89% 22

Total 1141 51 (16) 39 12.68 (19.82) 80% 22

Note: A—a Tomasulo-style machine for the DLX instruction set; B—same as A, but

with a single issue window; C—a model equivalent to the SimpleScalar simula-

tor [Burger and Austin 1997]; D—an out-of-order processor core for IA64; E—two of the cores

from D sharing a cache hierarchy.

multiprocessor models utilizing those cores, two Tomasulo-style machines that
execute the DLX instruction set, and a model that is cycle-equivalent to the
popular SimpleScalar [Burger and Austin 1997] sim-outorder.c sequential
simulator.

Each model was built by a single student and took under 5 weeks to develop.
Some models took far less time to build. For example, once one version of the
Tomasulo-style machine was built, the second model could be constructed in
under a day. The chip multiprocessor version of the IA64 model also took only
a day or two to produce once the core model was complete. These development
times are quite short. By comparison, SimpleScalar represents at least 2.5
developer-years of effort [Austin 1997]. For each of the models described,
LSE’s control abstraction and reuse features were critical in achieving these
development times, as will be seen in later sections.

7.2 Quantity of Component-Based Reuse

Table V quantifies the reuse in each of the models discussed above. There is a
good amount of reuse within each specification with each module being used
3–10 times on average. Furthermore, a significant percentage (73–89%) of in-
stances come from modules in the LSE module library. Notice also that the
numbers for specification A and B are quite conservative. To improve code clar-
ity, 36 and 35 modules, respectively, exist solely to wrap collections of other
components and took less than 5 min to write. The reuse statistics ignoring
these modules, shown in parenthesis in the table, show greatly increased reuse
per module.

Reuse across specifications is even more dramatic. Over all specifications,
each module is used 12.68 times with 80% of instances coming from the module
library. Neglecting the trivial wrapping modules, each module is used about 20
times, indicating considerable reuse.

The significant reuse described in the table is largely a result of LSE’s fea-
tures to reduce specification overhead. The SimpleScalar model, which was built
before many of the LSS features were available, contains the largest number
of nontrivial custom modules relative to the total size of the specification. All
the other models, which were built after the LSS features described in this
article were added, have far fewer nontrivial custom modules relative to their

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 247

size. This indicates that these LSS features are important for realizing reuse
in practice.

8. CONCLUSION

This article presented the design and implementation of the Liberty Simulation
Environment, a publicly available tool engineered to enable rapid construc-
tion of accurate models. LSE is a concurrent-structural modeling environ-
ment, which allows it to avoid the mapping problem. LSE makes reuse prac-
tical by employing several language techniques to reduce overhead. LSE
simplifies specification of timing control through a novel control abstraction
mechanism. Finally, LSE has an optimizer, enabled by careful selection of
execution semantics, that yields a simulator as fast as other concurrent-
structural approaches.

LSE’s design was motivated through a careful analysis of existing model-
ing systems. Sequential simulators suffer from the mapping problem which
makes the simulators difficult to build, validate, and modify; the mapping
problem also precludes the reuse of validated components. Existing concur-
rent structural systems, which avoid the mapping problem, preclude component
reuse in practice. Even with component reuse, specification of timing control is
time-consuming and no other systems attempt to address this.

Results and experience show that LSE makes rapid modeling and
component-based reuse practical. Furthermore, LSE’s optimization techniques
allow users to enjoy this benefit without suffering performance penalties when
compared to other concurrent-structural modeling systems. These properties
make LSE an excellent tool for high-level design space exploration.

ACKNOWLEDGMENTS

We thank Azmat Hussain, Vijay Pai, John Sias, Kees Vissers, Paul Willmann,
Ram Rangan, and the entire Liberty Research Group for their suggestions and
support during the development of LSE and this article. We also thank the
participatants in the user study presented in this article. Finally, we thank the
editors and reviewers for their insightful comments.

REFERENCES

AUSTIN, T. 1997. A user’s and hacker’s guide to the SimpleScalar Architectural Toolset (for toolset

release 2.0). Go online to http://www.cs.virginia.edu/∼skadron/cs 654/slides/hack guide.

pdf.

BLOME, J., VACHHARAJANI, M., VACHHARAJANI, N., AND AUGUST, D. I. 2003. The Liberty Simulation

Environment as a pedagogical tool. In Proceedings of the 2003 Workshop on Computer Architecture
Education (WCAE).

BURGER, D. AND AUSTIN, T. M. 1997. The SimpleScalar tool set version 2.0. Tech. Rep. 97-1342,

Department of Computer Science, University of Wisconsin-Madison, Madison, WI.

CAIN, H. W., LEPAK, K. M., SCHWARTZ, B. A., AND LIPASTI, M. H. 2002. Precise and accurate processor

simulation. In Proceedings of the Fifth Workshop on Computer Architecture Evaluation Using
Commercial Workloads.

CHAREST, L. AND ABOULHAMID, E. M. 2002. A VHDL/SystemC comparison in handling design reuse.

In Proceedings of 2002 International Workshop on System-on-Chip for Real-Time Applications.

COE, P., HOWELL, F., IBBETT, R., AND WILLIAMS, L. 1998. A hierarchical computer architecture design

and simulation environment. ACM. Trans. Model. Comput. Sim. 8, 4 (Oct.), 431–446.

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

248 • M. Vachharajani et al.

DESIKAN, R., BURGER, D., AND KECKLER, S. W. 2001. Measuring experimental error in microproces-

sor simulation. In Proceedings of the 28th International Symposium on Computer Architecture
(ISCA). 266–277.

DOUCET, F., OTSUKA, M., SHUKLA, S., AND GUPTA, R. 2002. An environment for dynamic component

composition for efficient co-design. In Proceedings of the Conference on Design, Automation and
Test in Europe (DATE).

DOUCET, F., SHUKLA, S., AND GUPTA, R. 2003. Typing abstractions and management in a component

framework. In Proceedings of Asia and South Pacific Design Automation Conference (ASP-DAC).

115–122.

EMER, J., AHUJA, P., BORCH, E., KLAUSER, A., LUK, C.-K., MANNE, S., MUKHERJEE, S. S., PATIL, H.,

WALLACE, S., BINKERT, N., ESPASA, R., AND JUAN, T. 2002. Asim: A performance model framework.

IEEE Comput. 0018-9162, 68–76.

GIBSON, J., KUNZ, R., OFELT, D., HOROWITZ, M., HENNESSY, J., AND HEINRICH, M. 2000. FLASH vs.

(simulated) FLASH: Closing the simulation loop. In Proceedings of the 9th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems (ASPLOS).

49–58.

HALAMBI, A., GRUN, P., GANESH, V., KHARE, A., DUTT, N., AND NICOLAU, A. 1999. EXPRESSION. A

language for architecture exploration through compiler/simulator retargetability. In Proceedings
of the European Conference on Design, Automation and Test (DATE).

JANNECK, J. W., LEE, E. A., LIU, J., LIU, X., NEUENDORFFER, S., SACHS, S., AND XIONG, Y. 2001. Disci-

plining heterogeneity—the Ptolemy approach. In ACM SIGPLAN 2001 Workshop on Languages,
Compilers, and Tools for Embedded Systems (LCTES).

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C., LOINGTIER, J.-M., AND IRWIN, J.

1997. Aspect-oriented programming. In Proceedings of the 11th European Conference for Object-
Oriented Programming (ECOOP). 220–242.

MISHRA, P., DUTT, N., AND NICOLAU, A. 2001. Functional abstraction driven design space exploration

of heterogeneous programmable architectures. In Proceedings of the International Symposium
on System Synthesis (1SSS). 256–261.

ÖNDER, S. AND GUPTA, R. 1998. Automatic generation of microarchitecture simulators. In Pro-
ceedings of the IEEE International Conference on Computer Languages. 80–89.

OPEN SYSTEMC INITIATIVE (OSCI). 2001. Functional Specification for SystemC 2.0. Available online

at http://www.systemc.org.

PEES, S., HOFFMANN, A., Z̆IVOJNOVIĆ, V., AND MEYR, H. 1999. LISA—machine description language

for cycle-accurate models of programmable DSP architectures. In Proceedings of the ACM/IEEE
Design Automation Conference (DAC). 933–938.

PENRY, D. AND AUGUST, D. I. 2003. Optimizations for a simulator construction system supporting

reusable components. In Proceedings of the 40th Design Automation Conference (DAC).

PENRY, D. A., VACHHARAJANI, M., AND AUGUST, D. I. 2005. Rapid development of a flexible vali-

dated processor model. In Proceedings of the 2005 Workshop on Modeling, Benchmarking, and
Simulation (MOBS).

SISKA, C. 1998. A processor description language supporting retargetable multi-pipeline dsp

program development tools. In Proceedings of the 11th International Symposium on System Syn-
thesis (ISSS).

SWAMY, S., MOLIN, A., AND CONVOT, B. 1995. OO-VHDL: Object-oriented extensions to VHDL. IEEE
Comput. 28, 10 (Oct.), 18–26.

THE LIBERTY RESEARCH GROUP. 2003. Web site: http://www.liberty-research.org/Software/LSE.

VACHHARAJANI, M. 2004. Microarchitectural modeling for design-space exploration. Ph.D.

dissertation, Department of Electrical Engineering, Princeton University, Princeton,

NJ.

VACHHARAJANI, M., VACHHARAJANI, N., AND AUGUST, D. I. 2004a. The Liberty Structural Specifi-

cation Language: A high-level modeling language for component reuse. In Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDI).

195–206.

VACHHARAJANI, M., VACHHARAJANI, N., MALIK, S., AND AUGUST, D. I. 2004b. Facilitating reuse in

hardware models with enhanced type inference. In Proceedings of the 2004 Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS).

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

Liberty Simulation Environment • 249

VACHHARAJANI, M., VACHHARAJANI, N., PENRY, D. A., BLOME, J. A., AND AUGUST, D. I. 2002. Microar-

chitectural exploration with Liberty. In Proceedings of the 35th International Symposium on
Microarchitecture (MICRO). 271–282.

XIONG, Y. 2002. An extensible type system for component based design. Ph.D. dissertation.

Electrical Engineering and Computer Sciences, University of California, Berkeley, CA.

Received January 2004; revised October 2005; accepted October 2005

ACM Transactions on Computer Systems, Vol. 24, No. 3, August 2006.

