
1

Approximate Gradient Coding Using Convex
Optimization

Sifat Munim and Aditya Ramamoorthy

Abstract—Gradient coding is a technique that helps mitigate
the effect of slow or failed workers within large-scale distributed
parameter learning. The basic idea is to introduce redundancy
within the assignment of data points to the workers and use
coding-theoretic ideas to allow the parameter server (PS) to
recover an exact or approximate gradient even in the presence of
failures. In this work, we present approximate gradient coding
schemes by applying convex optimization methods to structured
matrices such as circulants and transition matrices. For low
complexity (O(n)) decoding by the PS, our techniques perform
significantly better.

Index Terms—Approximate gradient coding, second largest
eigenvalue modulus (SLEM), convex optimization.

I. INTRODUCTION

LArge scale distributed learning is used routinely in most
modern machine learning problems. In these problems,

the huge amounts of data and corresponding computation
needs, necessitate the usage of large clusters. In a typical
parameter fitting scenario, there is a dataset and a correspond-
ing loss function. The goal of the system is to minimize the
loss function with respect to the parameter. For performing
this in a distributed fashion, the original dataset is subdivided
into smaller parts and different workers focus on computing
the gradient on the part(s) assigned to them. A designated
parameter server (PS) coordinates the training by aggregating
the received gradients from the workers and generating a new
parameter, and the process continues thereafter.

However, in many instances, workers within these clusters
are often slower than their promised speed or even prone
to failure. Such issues are often exaggerated in cloud based
clusters, where the worker usage fluctuates based on the
system load. To address these issues, the idea of gradient
coding was first introduced in the work of [1]. The basic idea is
to introduce redundancy within the assignment of data points
to the workers. Once a given worker calculates the gradient on
its assigned parts, it computes a specified linear combination of
these gradients and sends it to the PS. An exact gradient coding
solution allows the PS to exactly recover the full gradient even
in the presence of node failures. For exact gradient recovery
from any s failures, it can be shown that each part needs to
be replicated at least s+ 1 times across the cluster.

There are scenarios in which the full gradient is not required
or too costly to work with because of the high replication
factor needed, e.g., many ML algorithms work with mini-
batch stochastic gradient descent (SGD) where the gradients

The authors are with the Department of Electrical and Computer Engineer-
ing, Iowa State University, Ames, IA 50010, U.S.A.

are only computed on a subset of the data points. Approximate
gradient coding aims at designing schemes with guarantees on
the gradient quality even in the presence of a large number of
failures (greater than the replication factor of the parts). It was
introduced in [2], which showed connections of this problem
with the spectral properties of graphs and constructed schemes
from expander graphs. The work of [3] (see also [4]) observed
that Ramanujan graphs (expanders with the largest spectral
gap) only exist in restrictive settings and considered the
usage of sparse random graphs instead. The work of [5] also
presented graph based schemes in this setting. Connections of
approximate GC with block designs were considered in [6]
and subsequently in [7].

In this work, we use convex optimization methods [8]
along with structured matrices such as circulants and transition
matrices to design approximate gradient coding schemes.

II. BACKGROUND, RELATED WORK AND CONTRIBUTIONS

A typical problem instance within distributed learning con-
sists of a dataset D = {(xi, yi)}mi=1 of m points (where
the (xi, yi)’s are feature & label pairs), and a loss function
L = 1

m

∑m
i=1 l(xi, yi,w) that needs to be minimized with

respect to w ∈ Rd. Here, l is a function that measures the
prediction error for each point. When the size of D is large,
we can perform the task in a distributed manner.

The system consists of the PS and n worker nodes denoted
W1,W2, . . . ,Wn. In each iteration, the dataset is partitioned
into k disjoint subsets of equal size, D1,D2, . . . ,Dk. Let
B ∈ Rk×n be a matrix such that Bi,j ̸= 0 if and only
if subset Di is assigned to worker Wj . We call this the
encoding matrix; it also specifies the assignment of subsets to
workers. Let nnz(v) denote the number of non-zero entries in
a vector v. Let γi and δj denote nnz(B(i, :) and nnz(B(:, j))
(using MATLAB notation). These correspond respectively to
the number of times Di appears in the cluster (replication
factor) and the number of subsets assigned to Wj (computation
load). In what follows, we will assume that γi = γ for i ∈ [k]
and δj = δ for j ∈ [n].

Let gi ≜ k
m

∑
(xj ,yj)∈Di

∇l(xj , yj ,w). Define a matrix
G ∈ Rd×k such that G = 1

k [g1 g2 . . .gk]. Worker Wj

calculates gi for i ∈ supp(B(:, j)) (non-zero entries in the
jth column of B) and sends the following linear combination
to the PS: vj = 1

k

∑k
i=1 giBi,j = Gbj (bj denotes the

j-th column of B). The goal of the PS is to compute
∇L = 1

m

∑m
i=1 ∇l(xi, yi,w) = 1

k

∑k
i=1 gi either exactly

or approximately and iteratively update the parameter as
w(t+1) = w(t) − µt

m

∑m
i=1 ∇l(xi, yi,w

(t)). Here, µt > 0 is

2

the learning rate and w(t) is the state of the parameter w at
iteration t.

While decoding, the PS computes a linear combination of
the encoded gradients that it receives from the non-straggling
workers. Let s be the number of stragglers and F ⊆ [n] be a
set of indices that correspond to the non-straggling workers.
It computes g′ = GBr, where r ∈ Rn is a decoding vector
such that ri = 0 if i ∈ Fc.

Let d2(u,v) = ||u − v||2 (ℓ2-norm) and 1 denote the all-
ones vector. We have,

d2(g
′,G1) = ∥G(Br− 1)∥2 ≤ ∥G∥2∥Br− 1∥2,

where ∥G∥2 denotes the spectral norm of G. Thus, if Br = 1,
then we recover the exact gradient, while if ||Br − 1||2 > 0
then the gradient recovery is approximate.

The formulation of the gradient coding problem is predi-
cated on letting the PS act essentially as a coordinator with low
computational overhead. Thus, ideally, the decoding process
should be a light-weight procedure. While the decoding vector
r depends on F , within “fixed decoding” we set ri, i ∈ F in
a simple manner, typically such that all non-zero entries of r
are the same; the decoding complexity is O(n). On the other
hand, within “optimal decoding”, we choose r by solving a
least-squares problem minr ||Br−1||2 subject to the constraint
ri = 0 for i ∈ Fc. The time-complexity of this is O(n3).

Definition 1: For a given encoding matrix B and a given
set of non-stragglers corresponding to F ⊆ [n] of size n− s,
the error ErrF (B) is defined as

ErrF (B) ≜ min
r∈Rn

supp(r)⊆F

∥Br− 1∥2 (1)

The main goal within gradient coding is to design B such
that ErrF (B) can be upper bounded over all F of size at least
(n− s) using either the fixed or optimal decoding techniques
discussed above.

Owing to the high cost of optimal decoding in the PS, there
are scenarios where the PS wants to operate only with fixed
decoding. Thus, fixed decoding is the scenario we consider in
this work.
Related Work: Prior work within approximate gradient cod-
ing demonstrates constructions (with k = n) from expander
graphs [2] such as Ramanujan and Margulis graphs, sparse ran-
dom graphs [3] and [5], block designs [6], [7] and the like. For
fixed decoding with graph based schemes, [2] demonstrates an
upper bound on ErrF (B) that depends on the second-largest
eigenvalue modulus (SLEM) of B. In particular, let C ∈ Rn×n

be a matrix with eigenvalues λi, i = 1, . . . , n that satisfies the
following properties:

• There is an orthogonal set of n eigenvectors of C.
• 1 is an eigenvector of C and the corresponding eigen-

value λ1 is real, and it satisfies the following: λ1 ≥
max

j=2,...,n
|λj |.

Let us denote the SLEM of C by λ ≜ max(|λ2|, . . . , |λn|).
For a given F ⊆ [n] such that |F| = n− s, define uF ∈ Rn

as

(uF)i =

{
−1 i /∈ F
s

n−s i ∈ F
(2)

Now, Let B = 1
λ1
C and r′ = uF +1 so that supp(r′) = F .

Proposition 1: [2] For every nonempty set F ⊆ [n] of size
n − s such that r′ = uF + 1, we have ErrF (B) ≤ ∥Br′ −
1∥2 ≤ λ

λ1

√
ns
n−s .

We refer to λ
λ1

as the improvement factor of the scheme. Ev-
idently, B matrices with smaller λ/λ1 have better performance
under approximate gradient coding. However, constructing
such matrices is not so straightforward since for a fixed
computation load δ, each column of B needs to be sparse
as it can have (at most) δ non-zero entries.
Main contributions: In this work, we propose a new ap-
proximate gradient coding scheme that uses fixed decoding.
Our technique uses convex optimization to design circulant
matrices [9] and probability transition matrices [10] (corre-
sponding to Markov Chains on graphs) in order to minimize
the SLEM λ of the corresponding matrices, and hence the
upper bound of the fixed decoding error. These matrices are
easy to construct and hence our scheme is feasible for any n
and δ, in contrast to Ramanujan/Margulis graphs and block
design based techniques that have restricted parameter sets.
Our numerical experiments demonstrate that our schemes have
significantly better performance under fixed decoding.

III. OPTIMIZING SLEM OF CIRCULANT MATRICES

Definition 2: A circulant matrix C ∈ Rn×n is a square
matrix where all the rows contain the same entries and each
row is shifted one entry to the right than the previous row. It
has the following form.

C =

c0 cn−1 . . . c2 c1
c1 c0 cn−1 . . . c2
... c1 c0 . . .
...

.
...

cn−1 c1 c0

 .

The matrix is specified by one vector c = (c0, cn−1, . . . , c1)
T

where cT appears as the first row of C.

Proposition 2: [9] The eigenvectors of a circulant matrix C
are orthogonal and have the following form.

vj =
(
1, ωj−1

n , ω2(j−1)
n . . . , ω(n−1)(j−1)

n

)T
for j = 1, 2, . . . , n. Here, i =

√
−1 and, ωn = e

2πi
n is the

nth root of unity. The corresponding eigenvalues are λj =

c0 + cn−1ω
j−1
n + · · ·+ c1ω

(n−1)(j−1)
n = cTvj.

Suppose we choose a certain subset of entries in c to be
strictly positive; the others are set to zero. This means that C is
a non-negative matrix (all non-negative entries). It follows that
the all-ones vector 1 is an eigenvector of C with eigenvalue
cT1. Then it follows (see Theorem 8.3.4 in [11]) that λ1 =
cT1 = ρ(C) (spectral radius of C).

Our main idea in this work is to choose c with exactly δ
strictly positive entries, construct the circulant matrix C and
set the encoding matrix B as 1

λ1
C. In our work, we choose the

location of the δ non-zero entries of c at random and choose

3

their actual values using the following convex optimization
procedure, which can be solved efficiently.

It follows from the previous discussion that the SLEM of C
is λ = max

j=2,...,n
|λj | = max

j=2,...,n
|cTvj|. Thus, we can formulate

an optimization problem with decision variable c as follows
(the non-zero locations of c are in the subset C).

Minimize t

subject to cT1 = 1,

|cTvj| ≤ t, j = 2, . . . , n,

ci = 0, ∀ci /∈ C,
ci ≥ 0, ∀i ∈ {0, . . . , n− 1}.

(3)

We note here that (3) can be replaced by a constraint involving
only real matrices, as follows.

Consider positive-definite and Hermitian, Vj = vjv
†
j (su-

perscript † denotes conjugate-transpose) for j = 2, . . . , n. Let
Vj = Vr

j + iVc
j , where Vr

j and Vc
j are matrices with real

entries. Since Vj is hermitian, Vr
j is a symmetric matrix

and Vc
j is a skew-symmetric matrix. So, Vr

j = (Vr
j)

T and
Vc

j = −(Vc
j)

T . For any z ∈ Rn, we have

zTVc
jz = (zTVc

jz)
T = zT (Vc

j)
T z = −zTVc

jz,

so that zTVc
jz = 0. Thus, zTVjz = zTVr

jz + izTVc
jz =

zTVr
jz for any z ∈ Rn. So, Vr

j is also positive semi-definite
since for any z ∈ Rn such that z ̸= 0, zTVr

jz = zTVjz ≥ 0.
Consequently, |cTvj |2 = cTVjc = cTVr

jc is a convex func-
tion. So we can replace the inequality constraint |cTvj| ≤ t in
(3) by cTVr

jc ≤ t. Since the inequality constraint functions
are convex and equality constraint functions are affine, the
optimization problem (3) is convex [8].

IV. OPTIMIZING SLEM OF TRANSITION MATRICES

Our second class of approximate gradient coding schemes
are derived by optimizing the transition matrices of discrete-
time Markov chains defined on graphs.

Definition 3: Consider a discrete-time Markov chain with
n states. The corresponding transition matrix P ∈ Rn×n is a
matrix whose entry Pi,j represents the transition probability
of moving to state j given that the current state is i, i.e., for
i, j ∈ [n],

Pi,j = Prob(j|i) ≥ 0. (4)

Since the sum of the transition probabilities from a state i
to all other states must be 1, we have P1 = 1.

If P is symmetric, then it has real eigenvalues and the
eigenvectors are orthonormal. Let λ1 ≥ λ2 ≥ · · · ≥ λn be
the eigenvalues of P. Moreover, since a transition matrix is
non-negative and 1 is an eigenvector, by invoking Theorem
8.3.4 of [11] we get 1 = λ1 ≥ max

j=2,...,n
|λj |. So we can use

encoding matrix B such that B = 1
λ1
P.

To account for the computation load δ, we associate a δ-
regular graph with a symmetric transition matrix P. Let G =
(V, E) be a δ-regular graph, V = {1, . . . , n}. We let Pij = 0 if
and only if there is no edge between vertices i and j in graph
G. As a consequence, |supp(pi)| = δ. Let σ1 ≥ σ2 ≥ · · · ≥ σn

be the singular values of P. Since P is symmetric, we have
σi = |λi| for all i ∈ [n]. The SLEM of transition matrix P is
λ = max

j=2,...,n
|λj | = max

j=2,...,n
σj = ∥P − 1

n11
T ∥2. So, in this

case, the objective function is ∥P− 1
n11

T ∥2. Finally, we have
the following optimization problem [12].

Minimize ∥P− 1

n
11T ∥2

subject to P = PT ,

P1 = 1,

Pi,j = 0, if (i, j) /∈ E
Pi,j ≥ 0, for all i, j ∈ [n]

(5)

Here, the objective function is a norm and as a consequence,
a convex function. If the underlying graph G is predetermined,
then the equality constraint Pij = 0, if ij /∈ E is an
affine function. Since all the inequality constraint functions
are convex and all the equality constraint functions are affine,
the optimization problem (5) is convex [8].

V. NUMERICAL EXPERIMENTS

We now present the results of our numerical experiments
that compare our results with prior approaches. The first
set of experiments compares the improvement factor λ/λ1

of our optimization-based approaches with prior approaches.
Prior approaches based on Ramanujan and Margulis graph
constructions typically only exist for large and restricted values
of n. The second set of experiments considers fixed decoding
and compares the fixed decoding error of certain bad straggler
sets for the prior schemes with the improvement factor based
upper bound of our schemes. For these experiments, we
considered random regular graphs up to n = 200 as these
correspond to the more practical regimes for the distributed
learning setup.

The experiments were performed using CVXPY [13] and
Gurobi Optimizer [14]. All software for recreating these results
can be found at [15].

A. Improvement Factor Comparisons

Behavior with computation load: We computed the improve-
ment factors for different values of computation load δ with
n = 200 for random regular graphs and optimized circulant
and transition matrices. In case of circulant matrices, δ non-
zero entries of cT were chosen randomly; 1500 random trials
were conducted. The lowest improvement factor is shown in
the plot in Fig. 1. In case of transition matrices, for each value
of computation load δ, a random regular graph was generated,
and it was used as the underlying graph of the optimization
problem. From Fig. 1, it can be observed that the gap between
the improvement factors of our schemes and random regular
graphs increases as δ increases.
Comparisons with state-of-the-art instances: For Ramanu-
jan graphs, the SLEM is λ ≤ 2

√
δ − 1, which is a tight bound

[16]. For Margulis graphs, λ ≤ 5
√
2. These graphs constitute

instances of graphs with the best improvement factor.
We compared the improvement factors obtained by our

schemes with these graphs for the same values of (n, δ). In

4

5 10 15 20 25 30

Computation Load (δ)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Im
pr

ov
em

en
t

F
ac

to
r

Transition Matrix

Circulant Matrix

Random Regular Graphs

Fig. 1: Improvement factor vs computation load for n = 200.

particular, we chose a Ramanujan graph ((n, δ) = (1092, 30)),
a Margulis graph ((n, δ) = (529, 8)) and two random reg-
ular graphs ((n, δ) = (200, 8) and (200, 16)). For circulant
matrices, 1000 optimization problems (randomly chosen non-
zero entries) were run for each case and the best improvement
factor was reported. For transition matrices, the optimization
problems were run with the mentioned graphs as underlying
graphs. As shown in Fig. 2 the improvement factors of
circulant matrix and transition matrix are clearly better.

B. Fixed Decoding Error Comparisons

Our next set of comparisons are about the actual error of
the different schemes under fixed decoding. For each value
of s, for the random regular graph based scheme, we first
identified a bad straggler set that causes the fixed decoding
error to be relatively large. This is done by integer linear
programming. The details can be found in the Appendix. We
note here that finding the worst-case straggler set is in general
a hard problem. Each such bad straggler set corresponds to
how high the error can be for the graph-based scheme under
fixed decoding. We compared this error with the corresponding
upper bound on the fixed decoding error of our schemes,
that leverages the improvement factor. We emphasize that the
upper bound on the fixed decoding error of our schemes holds
regardless of what straggler set is considered.

We chose regular graphs (n = 100, 200 and δ = 8, 16) for
this comparison, i.e., there were a total of four graphs. For
(n, δ) = (100, 8), the cross-over points between the curves
occur at about a straggler fraction of 0.05 and 0.29 for the
circulant scheme and transition matrix scheme respectively.
When (n, δ) = (100, 16), the cross-over points shift left to
straggler fractions around 0.03 and 0.14 respectively.

For (n, δ) = (200, 8) the corresponding cross-over point
shifts to straggler fraction around 0.24 for the circulant
scheme; there is no cross-over for the transition matrix scheme
until a straggler fraction of 0.4. When (n, δ) = (200, 16), these
cross-over points shift left-ward to straggler fractions about
0.07 (circulant scheme) and 0.26 (transition matrix scheme).

We conclude that our optimization based schemes tend to
have larger improvement in performance when the computa-

Ramanujan
Graph

n = 1092
δ = 30

Margulis
Graph

n= 529
δ=8

Random
Regular
Graph

n = 200
δ= 8

Random
Regular
Graph

n= 200
δ= 12

Parameters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Im
pr

ov
em

en
t

F
ac

to
r

Adjacency Matrix of Graph

Transition Matrix

Circulant Matrix

Fig. 2: Comparison of improvement factors for different
constructions.

tion load is higher. This is expected, as a higher computation
load, allows for a larger feasible optimization space.

VI. CONCLUSION

In this work, we proposed a convex optimization based
schemes for approximate gradient coding under fixed decod-
ing. Our work is applicable for any values of parameters n
and δ, whereas techniques that are based on objects such as
expander graphs and block designs are applicable for a specific
set of parameters. Our numerical experiments demonstrate that
our approach has lower fixed decoding error than graph-based
schemes for a large range of straggler fractions.

APPENDIX

Finding the worst case straggler set:
Let r′ denote the decoding vector used under fixed decoding
when the number of stragglers is s (cf. discussion after (2)).
Thus, r′ is such that all non-zero component values are the
same. Let B be the adjacency matrix of a δ-regular graph,
normalized by δ. We have,

∥Br′ − 1∥22 = (Br′ − 1)T (Br′ − 1)

= r′TBTBr′ − 2δ1T r′ + 1T1

= r′TBTBr′ − 2δn+ n.

The second equality follows as the column-sums in B are
δ and the third equality follows since 1T r′ = n. Since the
last two terms in the third equality are constants and all non-
zero entries in r′ take the same value, we can formulate the
problem of maximizing the actual fixed decoding error for
a given number of stragglers as the following integer linear
programming problem.

Minimize − xTBTBx

subject to 1Tx = n− s,

xi ∈ {0, 1}, i = 1, . . . , n

(6)

5

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Straggler Fraction

1

2

3

4

5
F

ix
ed

D
ec

o
di

ng
E

rr
or

Upper Bound of Graph

Upper Bound of Transition Matrix

Upper Bound of Circulant Matrix

Error for Graph (cf. (6))

(a) n = 100, δ = 8.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Straggler Fraction

0.5

1.0

1.5

2.0

2.5

3.0

3.5

F
ix

ed
D

ec
o

di
ng

E
rr

or

Upper Bound of Graph

Upper Bound of Transition Matrix

Upper Bound of Circulant Matrix

Error for Graph (cf. (6))

(b) n = 100, δ = 16.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Straggler Fraction

1

2

3

4

5

6

7

F
ix

ed
D

ec
o

di
ng

E
rr

or

Upper Bound of Graph

Upper Bound of Transition Matrix

Upper Bound of Circulant Matrix

Error for Graph (cf. (6))

(c) n = 200, δ = 8.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Straggler Fraction

1

2

3

4

5

F
ix

ed
D

ec
o

di
ng

E
rr

or

Upper Bound of Graph

Upper Bound of Transition Matrix

Upper Bound of Circulant Matrix

Error for Graph (cf. (6))

(d) n = 200, δ = 16.

Fig. 3: (a)-(d) Fixed decoding error for regular graph from solving (6), along with upper bounds of graph, circulant and transition matrix.
The time limit to solve (6) was set to 300 seconds.

The equality constraint above ensures x has n − s nonzero
entries (as there are n−s non-stragglers). In our experiments,
we solved this problem using Gurobi Optimizer [14] under a
limited time constraint.

REFERENCES

[1] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Intl. Conf. Mach.
Learn. (ICML), August 2017, pp. 3368–3376.

[2] N. Raviv, R. Tandon, A. Dimakis, and I. Tamo, “Gradient coding from
cyclic MDS codes and expander graphs,” in Intl. Conf. Mach. Learn.
(ICML), July 2018, pp. 4302–4310.

[3] Z. Charles, D. Papailiopoulos, and J. Ellenberg, “Approximate gradient
coding via sparse random graphs,” 2017 [Online] arxiv:1711.06771.

[4] Z. Charles and D. Papailiopoulos, “Gradient coding via the stochastic
block model,” 2018 [Online] arxiv:1805.10378.

[5] M. Glasgow and M. Wootters, “Approximate gradient coding with
optimal decoding,” IEEE J. Select. Areas Info. Th., vol. 2, no. 3, pp.
855–866, 2021.

[6] S. Kadhe, O. O. Koyluoglu, and K. Ramchandran, “Gradient coding
based on block designs for mitigating adversarial stragglers,” in IEEE
Intl. Symp. on Info. Th., 2019, pp. 2813–2817.

[7] A. Sakorikar and L. Wang, “Soft BIBD and Product Gradient Codes,”
IEEE J. Select. Areas Info. Th., vol. 3, no. 2, pp. 229–240, 2022.

[8] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[9] R. M. Gray, “Toeplitz and circulant matrices: A review,” Foundations
and Trends® in Communications and Information Theory, vol. 2, no. 3,
pp. 155–239, 2006.

[10] G. Grimmett and D. Stirzaker, Probability and Random Processes.
Oxford University Press, 2020.

[11] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University
Press, 2012.

[12] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a
graph,” SIAM Review, vol. 46, no. 4, pp. 667–689, 2004.

[13] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” pp. 1–5, 2016.

[14] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[15] “Repository of Approximate Gradient Coding Using Convex Optimiza-
tion.” [Online]. Available: https://github.com/smunim-47/CVX_AGC

[16] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their
applications,” Bull. Amer. Math. Soc., vol. 43, no. 04, p. 439–562, Aug.
2006.

https://www.gurobi.com
https://github.com/smunim-47/CVX_AGC

	Introduction
	Background, Related Work and Contributions
	Optimizing SLEM of circulant matrices
	Optimizing SLEM of Transition Matrices
	Numerical Experiments
	 Improvement Factor Comparisons
	Fixed Decoding Error Comparisons

	Conclusion
	Appendix
	References

