
UNDER REVIEW 1

Systematical Evasion from Learning-based
Microarchitecture Detection Tools

Debopriya Roy Dipta, Jonathan Tan and Berk Gulmezoglu

Abstract—Microarchitectural attacks threaten the security of
individuals in a diverse set of platforms, such as personal
computers, mobile phones, cloud environments, and AR/VR
devices. Chip vendors are struggling to patch every hardware
vulnerability in a timely manner, leaving billions of people’s pri-
vate information under threat. Hence, dynamic attack detection
tools have become a popular way to detect ongoing attacks with
the utilization of hardware performance counters and machine
learning models. In this study, we evaluate the robustness of
various ML-based detection models with a sophisticated fuzzing
framework. The framework manipulates the hardware perfor-
mance counters in a controlled manner with the help of individual
fuzzing blocks. Later, the framework is leveraged to modify the
microarchitecture attack source code and to evade the detection
tools. We evaluate our fuzzing framework with time overhead,
achieved leakage rate, and the number of trials to successfully
evade the detection.

Index Terms—anomaly detection, microarchitectural attacks,
machine learning, fuzzing, side-channel attacks.

I. INTRODUCTION

Side-channel attacks have been a serious threat against
individuals and government entities in the last two decades.
The attacks have been improved with more sophisticated
techniques by leveraging power consumption measurements,
timing differences, acoustic signals, and electromagnetic emis-
sions to leak sensitive information. Microarchitectural attacks
have emerged as remote side-channel attacks since attackers
can collect side-channel information by only running benign-
looking software on the victim’s device or a shared computing
platform. These attacks exploit secret-dependent operations
by carefully monitoring microarchitecture state changes or
manipulating hardware components. Nevertheless, hardware
designers cannot keep up with the speed of new microarchi-
tectural attacks to patch all the vulnerabilities. Hence, several
Spectre-type [21], cache [16], [17], [20], Translation Look-
aside Buffer [15], and port contention [4] attacks are still
feasible in the latest generations of Intel and AMD processors.

The lack of timely patches pushes both cloud providers
and hardware designers to implement real-time monitoring
techniques to detect ongoing microarchitectural attacks. The
proposed detection methodologies mostly rely on the available
sensors in the system, such as power consumption [14],
performance counters [18], [28], and thermal readings [33],
to collect benign and malicious activities. The collected data
samples are then processed with either statistical methods or
machine learning models to distinguish any anomalies.

The authors are with the Department of Electrical and Computer En-
gineering, Iowa State University, Ames, IA 50010 USA (e-mails: roy-
dipta@iastate.edu, jona1115@iastate.edu, bgulmez@iastate.edu).

Among the detection methods, the most popular ones are
based on performance counters and machine learning to create
more sophisticated models. These methods need to choose
1) the hardware performance counter (HPC) framework, 2)
relevant performance counters for the targeted attacks, 3) the
resolution of the data collection, and 4) ML/DL model that
can detect anomalies. While a large portion of these detection
models claim that their detection accuracy is considerably
high, they are not tested against adversarial examples. This
leads to the robustness issue of the trained models, making the
detection models less trustworthy. Even worse, each detection
model utilizes a different benchmark for their benign applica-
tion dataset, which makes it more challenging to evaluate the
performance of the models.

In this paper, our aim is to evaluate the robustness of pro-
posed machine learning-based detection models with a unified
benchmark dataset and an automated fuzzing framework. Our
contributions are summarized as follows:
● Each performance counter used in the detection models

is manipulated with specially crafted code snippets, in-
cluding cache and branch-related counters.

● An automated fuzzing framework is developed to select
the most appropriate counter-manipulation techniques and
parameters to evade ML-based microarchitectural attack
detection models.

● We introduce an average of 50% time overhead on the
original attack source codes to be able to bypass detection
tools.

● The weaknesses of the current ML-based detection meth-
ods are explained with empirical results and potential
improvements are discussed for further research.

Outline. The rest of the paper is organized as follows:
Section II provides background on microarchitectural attacks
and defense mechanisms. Section III describes the threat
model for the study. Section V outlines the overview of the
proposed fuzzing technique. Section IV explains the created
fuzzing blocks in detail. Section VI gives an overview of
the reproduced detection models. Section VII evaluates the
fuzzing tool against detection models. Section VIII provides an
overview of closely-related studies. Section IX and Section X
conclude the paper with discussion and important results.

II. BACKGROUND

A. Microarchitectural Attacks

Microarchitectural attacks exploit the intricacies of hard-
ware design to leak secure information, often bypassing tra-
ditional security measures. These attacks take advantage of

UNDER REVIEW 2

the side effects of normal operations within a computer’s
physical architecture, such as cache timings [17], [20], branch
prediction [2], and speculative execution [21]. Depending on
the instructions executed on the hardware, attackers can leak
passwords [13], cryptographic keys [20], visited websites [31],
and so on.

B. Hardware Performance Counters (HPCs)

Hardware Performance Counters (HPCs) provide low-level
event information through dedicated model specific registers
during the execution of software. The events cover a wide
range of microarchitectural behaviors such as cache activity,
branch prediction performance, front-end and back-end char-
acteristics, and so on. These counters are used to profile a
running code in a more detailed way. The counter values are
then examined for the potential bottleneck of the software by
developers. All Intel and AMD devices include these counters
in their design to help software developers. The counters are
mostly accessible through libraries such as PAPI [27], perf [9],
and Intel PCM [1].

While these counters are actively utilized for reverse en-
gineering [26] and side-channel attack implementation [19],
their usage in dynamic microarchitecture attack detection is
more prevalent in personal computers [18], and cloud en-
vironments [39]. The number of events, their diversity, and
appropriate sampling rates remain active research areas as
the microarchitecture attacks evolve, changing their effects on
HPCs. Hence, many studies focus on selecting the best combi-
nation of counters to detect a diverse set of microarchitectural
attacks with high accuracy.

C. Machine Learning-based Microarchitectural Attack Detec-
tion

There are many studies attempting to detect microarchi-
tectural attacks in real-time. Some studies leverage basic
statistical measures to distinguish attack executions and benign
workloads [6], [39]. However, they are not good at learning
the complex behavior of microarchitecture attacks, leading
to weak detection methods. Hence, machine learning and
deep learning-based detection techniques have become more
popular due to their superiority in learning relations between
data samples [3], [11], [28]. The ML models used in these
detection techniques span from basic models such as SVMs
to more advanced models such as CNNs. These models can
adapt themselves to the changing landscape of attacks better
than statistical methods, making them more suitable for attack
detection. A large portion of these studies train supervised
models with benign and attack datasets and evaluate their
models with real-time collected performance counter values.

III. THREAT MODEL

In our threat model, we assume that an attacker is co-located
with the victim on the same hardware (either a personal laptop
or a shared cloud environment). The victim machine has an
active dynamic detection tool, which monitors pre-determined
hardware counters and distinguishes between benign and at-
tack executions. The attacker aims to evade the detection tool

while leaking secrets. The attacker has no information on
what type of ML model is used to train the detection tool.
The attacker only knows which counters are monitored by the
detection tool. The attacker prepares the malicious code in a
separate machine and the code is sent to the victim machine
through a network channel. When the attacker executes a code
snippet, the execution is stopped by the detection tool if an
attack is detected. The attacker has no other feedback from the
detection tool such as confidence ratio from the ML model.
There is no limit on the number of executions an attacker can
make on the victim’s device. We perform our experiments on
an Intel Comet Lake microarchitecture.

IV. FUZZING FRAMEWORK OVERVIEW

The fuzzing framework is designed to automatically modify
the attack source code, requiring minimal human intervention
and manual coding. The framework is based on the Python
language to ease the insertion of code blocks to the source
code. The purpose of the framework is to manipulate the
targeted hardware performance counters by modifying the
source code by inserting wait times, and additional instructions
and changing the number of measurements while leaking
secrets and evading ML-based detection tools.

Fig. 1: Fuzzing Framework

Figure 1 outlines the generic fuzzing framework. In Step
1, the attacker chooses the attack type that will be performed
on the victim’s machine. The required files, such as C codes,
header files, and Makefile for the attack code, are prepared
as an initial step. While the header files and Makefile remain
the same, the C code is updated every iteration in the fuzzing
process. A config file is written to tell the framework what
configuration the experiment should be.

In step 2, the framework inserts C and/or assembly code
snippets into certain parts of the attack code, targeting specific

UNDER REVIEW 3

HPCs. The insertion is fully automated in the framework
as specific locations are pre-determined in the source code
such that the side-channel information is not destroyed by an
unexpected behavior of the newly added code snippets. After
that, the modified files are compiled in the attacker machine
and sent to the victim machine to be executed.

In Step 3, the attacker executes the attack code in the
victim’s machine. Once the attack code starts executing, the
counter monitoring tool starts to collect statistics from the
counters. We only consider PAPI [27] and perf [9] tools as
monitoring tools in this study as they are the most popular
ones. Once the attack code execution finishes, the monitoring
tool stops the monitoring process. The side-channel measure-
ments are written to a file and sent to the attacker’s machine.
We consider two potential outcomes in Step 3: 1) The attack
code could be detected as a malicious activity and stopped
executing the program, 2) The attack code executes the code
without detected and the measurements are sent to the attacker-
controlled machine.

In step 4, the attacker analyzes the returned measurements.
If there are no measurements, it means the attack code stopped,
and the secret cannot be leaked. In this case, the attack code
goes through another iteration of fuzzing starting from Step 2.
Otherwise, the secret is leaked, and the attack is successful.
The attacker keeps the statistics related to the attack, such
as the number of characters leaked (Spectre attack) or the
percentage of recovered secret keys (cache attacks) as well
as the time spent on leaking the secret. If the fuzzing is
successful in leaking the secret, the framework terminates, and
the attacker can view all fuzzing modifications to the original
attack code file.

V. FUZZING TECHNIQUE

In this section, we discuss our fuzzing primitives that can ef-
fectively manipulate hardware performance counters (HPCs).
We evaluate their functionality based on their effectiveness
in modifying targeted counters, side-effects on un-targeted
counters, and time overhead introduced by modifications.

There are many ways an attacker can introduce dummy
code blocks into an attack source code to increase or decrease
hardware counter values that are used by ML-based detection
models [36]. As these counters are the only source of profiling
the current activity in a system, they are crucial for the
detection model to distinguish benign and malicious code
executions. In our framework, we create fuzzing blocks that
can be adapted to changing detection models, such as utilized
performance counters, trained machine learning models, and
profiling resolution. These changes are controlled by creating
parameterized code blocks. For example, the number of iter-
ations, the length of an array, and the number of instructions
control the amount of cache misses. Given the parameterized
nature of our fuzzing technique, we are able to manipulate the
counters in a controlled manner in our framework.

Our purpose is to manipulate each counter separately while
minimizing the effect of each fuzzing block on other counters.
For this purpose, we evaluate each fuzzing block based on
its side-effect on other counters as well as the time overhead

brought by additional instructions. As an example, the number
of branch instructions can be increased by introducing empty
for loops. However, when the number of conditional jump
instructions increases, the introduced time overhead rises in
parallel. Hence, we seek to find a balance between time
overhead and its effectiveness. At the same time, we aim to
reduce the side effects of each fuzzing block, meaning that
when targeting a specific HPC, the change in other counters
is minimized.

A. Fuzzing Cache Related HPCs

The first fuzzing block targets cache-related counters. The
attacks considered in the ML-based detection models leave
a distinct fingerprint on the cache counters, such as L1/L3
cache misses and cache references. The manipulation of these
counters is extremely important to create an efficient evasion
method with fuzzing. The fuzzing framework is designed to
insert a set of instructions that copies elements from one
array to another, which increases the cache-related counters.
In contrast, several slow-down techniques are integrated into
the framework to decrease the occurrence of cache events.

The fuzzing block given in Listing 1 copies elements from
an array s to another array d, which is located far apart in mem-
ory. We allocated both array’s locations in memory greater
than 2MB away to make sure that the prefetching mechanism
does not fetch nearby cache blocks from memory. This code
block allows an increase in the number of cache-related
activities. Before running the function, the source array, s, is
initialized to some arbitrary data using memset. After copying
elements from array s to array d, fuzz_simple_lw_sw 2,
both arrays are then flushed using the clflush instruction to
ensure maximum cache access and/or miss rate.

It is to be noted that memset is used instead of for
loops while initializing the source array (s) to lower fuzzing
overhead. We noticed that when disassembling the C code,
memset is disassembled to call memset@PLT, which runs
99% faster than for loops. The decrease in overhead is verified
not only using PAPI, but also as an observation of the reduction
in time overhead during the fuzzing process.

1 uint8_t *b = (uint8_t*) malloc(6 * ONE_MEGA_BYTE *
sizeof(uint8_t));

2 uint8_t *s = b;
3 uint8_t *d = b + 2 * ONE_MEGA_BYTE;
4

5 memset(s, 0xA, FUZZ_SIMPLE_LW_SW_LEN);
6

7 fuzz_simple_lw_sw(s, d, FUZZ_SIMPLE_LW_SW_LEN);
8

9 k = 8; // Size in bytes of a x86 cache line
10 for (int i = 0; i < LEN * k; i += 8 * k) {
11 flush((void *)(s + i));
12 flush((void *)(d + i));
13 }
14 free(b);

Listing 1: Fuzzing code targeting cache and cache HPCs

1 asm volatile (
2 "movq $0, %%rcx\n\t" //Initialize counter to 0
3 "loop_start_2:\n\t"
4 "movq (%%rsi, %%rcx, 4), %%rax\n\t" // Load

integer from source array.

UNDER REVIEW 4

5 "movq %%rax, (%%rdi, %%rcx, 4)\n\t" // Store it
into destination array.

6 "incq %%rcx\n\t" // Increment counter
7 "cmpq %[count], %%rcx\n\t" // Compare counter with

count
8 "jl loop_start_2\n\t" // If counter is less,

loop_start_2
9

10 // Output operands
11 : [count] "r" ((uint64_t) {LEN}), "S" (s), "D" (d)

// Input: count, src (esi), dest (edi)
12 : "%rax", "%rcx", "memory" // Clobbered: rax, ecx,

and memory to indicate memory is being modified
13);

Listing 2: Fuction fuzz_simple_lw_sw

Evaluation. The number of introduced cache misses and cache
references are controlled by an input to memset command.
This parameter decides how many copy operations will be
executed to increase the cache-related events. In Figure 2, we
show that 10,000 copy operations create around 26,000 cache
misses and 57,000 cache references. These numbers gradually
increase with the increasing number of copy operations, which
can be managed by the parameterized input to the fuzzing
block. Our experiments show that the time overhead is around
100µs if 10,000 copy operations are executed. The time
overhead can rise up to 1.2 ms when 1.9×105 copy operations
are inserted into the attack code. The time overhead indicates
that an attacker can even increase these counters further since
typical detection models sample the counters either every 10
ms or 100 ms. Hence, the balance between the side-channel
measurement collection and dummy operations is crucial to
evade the detection while introducing lower time overhead
during the attack execution.

1 movq -80(%rbp), %rax
2 movl $10000, %edx
3 movl $10, %esi
4 movq %rax, %rdi
5 call memset@PLT

Listing 3: memset Disassembled

1 movl $0, -184(%rbp)
2 jmp .L9
3 .L10:
4 movl -184(%rbp), %eax
5 movl %eax, %ecx
6 movl -184(%rbp), %eax
7 movslq %eax, %rdx
8 movq -80(%rbp), %rax
9 addq %rdx, %rax

10 leal -24(%rcx), %edx
11 movb %dl, (%rax)
12 addl $1, -184(%rbp)
13 .L9:
14 cmpl $9999, -184(%rbp)
15 jle .L10

Listing 4: For Loops Disassembled

B. Fuzzing Branch Related HPCs

1) Retired Branch Instructions. Retired branch instructions
are the branch instructions (call, jmp, jne, etc.) that have been
successfully executed and no longer have any dependencies
with other micro-operations in the instruction pool. They
are considered ”retired” once they are committed as part

Fig. 2: The comparison of introduced cache misses and cache
references events with varying numbers of memory transfers.
The yellow line represents the additional time overhead for
each parameter.

of the architectural state and leave the retirement unit. In
Listing 5, the code snippet is leveraged to alter the number
of retired branch instructions. Based on our observation, the
number of retired branch instructions stays within a certain
range for Spectre-type attacks. In general, the number of
retired branch instructions is expected to be low for benign
processes that create less workload on the system. However, in
benign applications with high workloads, such as multi-thread
applications, we observed that many benign applications could
generate far more retired branch instructions than the Spectre
attacks. Therefore, if an attacker can alter the number of
retired branch instructions to increase drastically, it is possible
to evade ML-based detection models. We consider the code
snippet in Listing 5: Branch_Inst_HPCs fuzzing block
to manipulate the number of retired branch instructions by
inserting them into the attack code.

1 /* Fuzzing Module: Branch_Inst_HPCs */
2

3 int retired_branches = 0;
4 asm volatile (
5 "movl $0, %%eax\n\t" // Initialize counter to 0
6 "movl ${initial_value}, %%ecx\\n" // Set loop

counter
7 "1:\n\t" // Label 1 for the loop start
8 "incl %%eax\n\t" // Increment the EAX register
9

10 // Introduce multiple branch instructions
11 "testl %%eax, %%eax\n\t" // Test EAX (logical

compare)
12 "jz 2f\n\t" // Jump to label 2 if zero
13 "jmp 3f\n\t" // Jump to label 3 unconditionally
14 "2:\n\t" // Label 2 (Always skipped)
15 "movl %%eax, %%eax\n\t"
16 "jmp 4f\n\t"
17 "3:\n\t" // Label 3
18 "movl %%eax, %%eax\\n\\t"
19 "4:\n\t" // Label 4
20

21 "decl %%ecx\n\t" // Decrement loop counter
22 "jne 1b\n\t" // Jump to Label 1 if not zero
23 : "=a" (retired_branches) // Output: final value

of EAX (not used)
24 : // No input
25 : "%ecx" // Clobbered register

UNDER REVIEW 5

26);

Listing 5: Fuzzing code targeting retired number of branch
instruction

This fuzzing block introduces several branch instructions to
impact the number of retired branch instructions. This block
takes initial_value as an input to set the loop counter,
ECX. This input is automatically set by the fuzzing framework
to manipulate the branch-related HPCs in a controlled way. A
loop is initiated at line 7 (”1:”), in which the EAX register
is incremented. There are two consecutive branch instructions
followed by a testl operation. The first one (Line 12) is a
conditional jump that could jump to Label 2 if the previous
testl instruction sets the zero flag. This jump instruction is
never taken as EAX is always non-zero due to the preceding
increment. The second branch instruction is an unconditional
jump, which is always taken and could jump to Label 3.
At Line 21, the loop counter ECX is decremented, and a
conditional branch instruction could make a backward jump
to start from label 1 until the ECX sets to zero. Therefore, this
fuzzing block controls the number of backward jumps taken
by the module by varying the initial_value parameter,
leading to a controlled manipulation of the retired branch
counter.

Fig. 3: The comparison of introduced branch instructions
retired events with varying numbers of loop iterations. The
orange line represents the additional time overhead for each
number of iterations.

Evaluation. The number of retired branch instructions can
be increased faster than the cache-related events because
the fuzzing block does not spend a large amount of time
executing branch instructions compared to memory transfers,
as illustrated in Figure 3. Hence, with 10,000 iterations, the
number of branch instructions rises up to 4×104 in around 14
ms. This number can gradually increase up to 3.3× 105 when
the number of iterations reaches 10,000. The iteration number
is the parameterized input to this fuzzing block to control the
counter values in the sampling interval (100ms for the tested
detection tools).

2) Retired Mispredicted Branch Instruction. We alter the
number of retired branch instructions in the previous code

snippet to introduce additional mispredicted branch instruc-
tions. We modify Listing 5 by creating two alternate paths
that change randomly based on an input. The frequent and
random changes in the conditional branch instructions make
it more challenging to guess the correct path for the processor
branch prediction unit as given in Listing 6). The number of
mispredictions is controlled by the number of loops. However,
when the branch prediction unit obtains a longer history, it is
expected that increasing the number of iterations will have less
effect on the mispredicted branch counter as the number of
mispredictions will not increase with the same amount. This
is why we expect a non-linear behavior in the increase of
the counter compared to the retired branch instructions. The
number of newly introduced mispredicted branch instructions
are still expected to manipulate the counters sufficiently to
evade the detection tools.

1 int mispredict = 0;
2

3 // Assembly block to create frequent branch
mispredictions

4 asm volatile (
5 "movl $0, %%eax\n\t" // Initialize counter to 0
6 "movl ${initial_value}, %%ecx\n" // Set loop

counter
7 "1:\n\t" // Label for the loop start
8 "cmpl $0, %%eax\n\t" // Compare counter with 0
9 "je 2f\n\t" // Jump if equal to label 2

10 "jmp 3f\n\t" // Jump to label 3
11 "2:\n\t" // Label 2
12 "movl $1, %%eax\n\t" // Set counter to 1 to

alternate path
13 "jmp 4f\n\t" // Jump to label 4
14 "3:\n\t" // Label 3
15 "movl $0, %%eax\n\t" // Set counter to 0 to

alternate path
16 "4:\n\t" // Label 4
17 "decl %%ecx\n\t" // Decrement loop counter
18 "jne 1b\n\t" // Jump to start of loop if not zero
19 : "=a" (mispredict) // Output: final value of EAX

(not used)
20 : // No input
21 : "%ecx" // Clobbered register
22);

Listing 6: Fuzzing code targeting retired number of
mispredicted branch instruction

Evaluation. Increasing the number of mispredictions is a more
challenging task since modern branch prediction units have
better capabilities to learn complex branch patterns. Hence, the
number of introduced branch instructions in a given time frame
is relatively lower than other counters, as given in Figure 4.
More importantly, the counter values are not deterministic
since the prediction unit makes random guesses, affecting
the counter values. Our fuzzing block can generate up to
10 × 104 mispredicted branch events in 23 ms. Note that the
time overhead introduced by this block is comparably higher
than other counter-manipulation techniques due to back-to-
back conditional branch instructions. The number of loops
for the branch instructions clearly affects the counter value,
which can manipulate counter values randomly. Since the
purpose of our fuzzing tool is to introduce random noise to
the attack codes, this fuzzing block is still useful for evading
the detection tools as detailed in Section VII.

UNDER REVIEW 6

Fig. 4: The comparison of introduced mispredicted branch
instructions events with varying numbers of loop iterations.
The orange line represents the additional time overhead for
each number of iterations.

C. Fuzzing Total Instructions Related HPCs

The number of instructions can be impacted by slowing
down the attack code. In this fuzzing block, we insert a sleep
instruction as a fuzzing snippet into the attack code. However,
the sleep period requires to be adjusted in a controlled manner
as it can introduce a high time overhead during the attack
execution, even leading to lower leakage rate. As an exam-
ple, for Spectre variant 1, adding an additional 75 µs sleep
amount in each attack iteration reduces the leakage accuracy
significantly. Therefore, the proposed fuzzing tool iterates over
different sleep times and chooses the most appropriate value
that ensures both the efficacy of the fuzzing tool and the attack
success rate.

D. Randomizing the Attack Code Over Multiple Encryptions

In cache-based attacks, e.g., Flush+Flush, Flush+Reload,
and Prime+Probe, the attacker runs the attack over thousands
of AES encryptions or RSA decryptions to leak the correct
cryptographic key. In the case of AES key recovery attacks,
the same attack rounds are repeated, and the attack execution
leaves a unique signature for detection models to detect ongo-
ing attacks. However, we observed that the number of encryp-
tions considered by the detection models is extremely high to
distinguish attack executions. It is actually possible to maintain
a similar leakage rate with a comparatively smaller number
of encryptions. Therefore, our fuzzing block randomizes the
number of actual attack rounds over the thousands of benign
encryption to confuse the detection model. In other words, the
attacker code does not perform the attack at each encryption.
If the attack code iterates over N number of encryption, our
fuzzing tool will restrict the attack code to perform cache
profiling M times where M < N . Thus, ideally, the attack
code will generate attack signatures only over M encryption,
while for the rest (N −M) number of encryptions, it will
simply generate benign features. As most of the detection
models consider a length of prediction window to confirm

an attack scenario, this technique works incredibly well to
evade the detection as the attack code creates mixed HPCs
from both benign and attack features. This fuzzing block
is extremely useful for the detection techniques that solely
profile the running applications (process-specific) as there is
no system noise. Hence, randomizing the number of attack
rounds over a fixed number of encryptions can change the
counter values significantly.

VI. REPRODUCED ML-BASED DETECTION TOOLS

HPCs are state-of-the-art sensors to design attack detection
tools to identify various types of micro-architectural attacks.
Although there are various HPC-based detection models in
the literature, most of them are not open-source and it is
challenging to reproduce all of them due to the unavailability
of the source code and outdated or unsupported HPC events
in newer processors. Among different detection models, we
selected four detection tools to evaluate the efficacy of our
fuzzing tool in evading the detection. In the detection tool
selection process, we gave priority to the diversity of im-
plemented ML models as well as the utilized performance
counters. In total, we test nine ML models and six performance
counters. These variations in detection models create a more
challenging scenario for our fuzzing tool, leading to a better
understanding of its capabilities.

In Table I, we outline the detection tools that have been
reproduced to check the viability of the proposed fuzzing tool.
Our reproduced detection tools only differ in terms of the
benign applications used in the training process compared to
the original work. As any chosen benign application simply
acts as a subset of the world-wide benign applications, we
adopt our own set of applications with wide variation and
keep them consistent for all the reproduced models. For our
experiment, we selected the Phoronix test-suite framework as
our base, which supports more than 200 test applications. This
framework is chosen because the test applications mimic real-
world applications by stressing out the processor, memory, or
the entire system. The variation of their workload, as well
as their impact on different hardware features, make them a
more realistic and practical choice to train the models. In the
literature, most of the time, the considered benign applications
generate lower counter values compared to an attack process.
However, this is not the case for all benign applications. While
testing with the Phoronix-test-suite framework, we noticed that
the counter values might increase beyond the attack process for
some benchmark applications. Therefore, a single threshold-
based prediction model is not suitable in scenarios where the
victim runs high-stress workloads.

The first reproduced detection tool (Tool 1) was proposed
by C. Li et al. [24], where the authors utilize the system-
wide HPCs to detect Spectre variant 1. The authors used
perf framework to collect four hardware events with 100
ms resolution and trained three separate machine learning
models with Support Vector Machine (SVM), Multilayer Per-
ceptron (MLP), and K-Nearest Neighbor (KNN) algorithms.
The performance of the reproduced model in our test setup is
listed in Table II. Both SVM and KNN-based detection model

UNDER REVIEW 7

TABLE I: Reproduced ML-based detection tools to evaluate the efficiency of our fuzzing framework. (Note: s.w.=system-wide,
p.s.=process-specific)

Detection Tool HPC framework Hardware Events Resolution ML/DL
Model

Targeted
Attack

C. Li et al. [25] perf (s.w.)

cache-misses
cache-references
br inst retired.all branches
br misp retired.all branches

100 ms
SVM
MLP
KNN

Spectre v1

J. Depoix et al. [11] papi (p.s.)
L3 cache misses (L3 TCM)
L3 cache accesses (L3 TCA)
Total number of instructions (TOT INS)

100 ms NN Spectre v1,v2

Mushtaq et al. [30] PAPI (s.w.)

Total-CPU-Cycles (TOT CPU CYC)
L1-Data-Cache-Misses (L1 DCM)
L3 Total Cache Misses (L3 TCM)
L3 Total Cache Accesses (L3 TCA)

10-100
encryption rounds
100 ms for
Spectre/Meltdown

DT
RF
SVM

P+P
F+R
F+F
Spectre
Meltdown

B. A. Ahmad et al. [3] papi, perf
(s.w., p.s.)

L3 cache misses (L3 TCM)
L3 cache accesses (L3 TCA)
Total number of instructions (TOT INS)
Total branch instruction (BR INS)
Branch Miss-Predictions (BR MSP)

100 ms

LDA
LR
SVM
CNN

Spectre v1, v2
Meltdown

TABLE II: Performance of the reproduced models.

Tool # ML/DL
Model

Detected
Attack

Obtained
Acc. (%)

Tool 1 [25] SVM/KNN/MLP Spectre v1 99.8/99.8/83.5

Tool 2 [11] NN Spectre v1 97.5
Spectre v2 93.5

Tool 3 [3] DT/RF/SVM F+R 99.9/100/99.2

Tools 4 [30] SVM/CNN/LDA/LR Spectre v1 98.7/97.9/79.9/79.2
Spectre v2 98.4/98.3/81.5/83.3

provides 99.8% accuracy, however, the MLP-based model can
only detect the attack with 83.5% accuracy. As the MLP-
based model does not perform well in our setup, this model is
excluded from the fuzzing framework evaluation experiments.

The second detection tool (Tool 2) is reproduced from the
work of J. Depoix et al. [11]. The PAPI framework is used
to record three hardware events with 100ms resolution. Tool
2 targets first two variants of Spectre attack. Therefore, two
separate Neural Network-based detection model is trained for
Spectre v1 and Spectre v2. In other words, Tool 2 comprises of
two different detection tools for targeting each specific attack.
The accuracy of Tool 2 for detecting Spectre v1 and Spectre
v2 are 95.9% and 93%, respectively.

Tool 3 is derived from [30], where the authors target five
different attacks (Table I). In our reproduced model, we only
target Flush+Reload (F+R) attack out of all the other cache-
based attacks. The data is collected after every 100 encryption
rounds using the PAPI framework. We expect that if the
fuzzing tool works with F+R, it is expected to be viable with
both Flush+Flush (F+F) and Prime+Probe (P+P) attacks. For
this attack, three separate ML-based models are trained that
are built with Decision tree (DT), Random Forest (RF), and
SVM, respectively. The accuracy of Tool 3 is always more than
99% for all cases including different attacks and ML models,
aligning with the results presented in [30].

The last tool is reproduced from [3], where the authors
recorded five hardware events to create the detection tools
for Spectre and Meltdown attacks. As mentioned earlier, we
exclude Meltdown attack as it is no longer effective in the

current test setup. Therefore, Tool 4 comprises of two detection
tools for Spectre v1 and Spectre v2. Four ML-based models are
created for each attack types that employs Linear Discriminant
Analysis (LDA), Logistic Regression (LR), SVM, and Convo-
lutional Neural Network (CNN) algorithms. Although LDA
and LR-based models do not perform well in our setup, both
CNN and SVM-based model achieve around 98% accuracy.
In Section VII, we evaluate the performance of our proposed
fuzzing tool against the two best performing models.

VII. EVALUATION

The performance of the proposed fuzzing tool is evaluated
with four detection models (Table II) that have high diversity
in terms of HPC events and machine learning algorithms.
As mentioned in Section V, the fuzzing tool supports five
fuzzing blocks capable of altering different HPC events. The
fuzzing tool will randomly choose one of the five modules and
insert it into a target attack code. Each fuzzing block has one
parameter to control the degree of HPC-specific manipulation
during the attack code execution. The fuzzing tool first selects
different values for the parameter of a randomly selected
module to evade the detection tool. If the parameter’s chosen
values are insufficient to fool the detection tool, it will select
another module and repeat the parameter selection process.
The fuzzing tool may go through multiple iterations to find the
appropriate parameter to evade the detection tool successfully.

In this section, the performance of the fuzzing tool is
evaluated separately against each detection tool in terms of
fuzzing time, number of attempts, and preservation of the
original leakage rate. We also evaluate how each proposed
fuzzing block impacts the HPCs while inserted into the attack
code to give a better insight. In Table III, all the proposed
fuzzing blocks are listed with the associated parameters that
can control the manipulation of specific counter values. For
every block, the fuzzing tool iterates the parameter over a pre-
determined range (Start-Stop range) with a fixed step value to
find the best parameter value for the fuzzing module.

UNDER REVIEW 8

TABLE III: The list of created fuzzing blocks for the proposed
fuzzing technique.

Module’s Name Variable Start-Stop
range

Step
value

Cache HPCs Memory Initialization
Length (LEN) 10000-200000 B 10000 B

Branch Misp HPCs Loop Counter 30000-50000 1000
Branch Inst HPCs Loop Counter 30000-50000 1000
Total Inst HPCs Sleep time 10-70 us 10 us

Randomize Attack # attack per 100
encryption 100-10 -10

Detection Tool 1. As mentioned in Section VI, Detection Tool
1 is trained with four hardware features to detect Spectre
v1. The four HPC events are cache misses, cache references,
branch instruction retired, and branch misprediction retired.
The fuzzing tool randomly chooses one of the fuzzing blocks
outlined in Table III to alter the counter values of the HPC
events. This approach is more suitable in a scenario where
the attacker is not aware of the HPC events beforehand, based
on which the machine learning model is trained. The fuzzing
tool is tested five times to fuzz the Spectre v1 code, and the
modified attack code can successfully evade the detection tool
in each run. It is to be noted that Detection Tool 1 comprises
three ML-based models. The outcome is only considered a
success if the fuzzed attack code can evade all the models.

The results of the five run-times against Detection Tool 1 are
presented in Table IV. We observed that the fuzzing frame-
work selects either Branch Misp HPCs, Branch Inst HPCs,
or Cache HPCs as the final fuzzing block to evade the
detection tool in different runs. For Run-Time 1, the fuzzing
tool can evade the detection tool in 20.9 seconds with only
2 attempts. The Branch Misp HPCs block can successfully
modify the attack code to evade the detection tool with an
additional 31000 conditional loops while the leakage rate for
the Spectre v1 attack remains the same. The attack code
only slows down 1.6 times compared to the baseline attack
execution. The number of attempts rises to 7 for Run-Time
2 when the Cache HPCs block is used for fuzzing. This
indicates that the fuzzing tool selected other fuzzing blocks
that failed to evade the detection tool in the first iterations.
In other words, it takes 7 attempts to find the appropriate
module with the correct parameter to evade the detection tool
finally. This fuzzing runs for 71.3 seconds to create the attack
code, transfer it to the victim machine, execute the code, and
return the results. This process is repeated 7 times to obtain
the evasive attack code. The performance overhead of the
evasive attack code is 2.1 times. As the order of the fuzzing
blocks testing for the fuzzing tool is random, we calculated
the average time over five different run-times to provide an
estimation of the entire fuzzing process, which is 46.7 seconds.
Also, the average performance overhead is 1.6 times for the
evasive attack codes. Our results show that it takes less than
a minute to create an evasive attack code with the fuzzing
framework for Detection Tool 1.
Detection Tool 2. Detection Tool 2 comprises two NN-
based models that can detect Spectre v1 and Spectre v2. The
models are trained with three HPC features, namely, L3 cache

TABLE IV: Performance evaluation of the Fuzzing tool against
Detection Tool 1

Detection Tool 1
Run
Time

Selected
Module

Tuned
Param.

of
Attempt

Time
Spent

Time
Overhead

#1 Branch Misp HPCs 31000 2 20.9s ×1.6
#2 Cache HPCs 70000 7 71.3s ×2.1
#3 Branch Inst HPCs 24000 5 46.9s ×1.3
#4 Branch Misp HPCs 31000 4 48.5s ×1.6
#5 Branch Inst HPCs 24000 5 46.0s ×1.3

Avg. 46.7s ×1.6

misses, L3 cache accesses, and the total number of retired
instructions. We tested our fuzzing tool with this detection
tool, and the results on time overhead and the time spent on
fuzzing process are described in Table V. For Spectre v1,
the Branch Misp HPCs module cannot evade the detection
tool with the generalized setup of our fuzzing tool. The
rest of the modules are capable of evading the detection,
and the fuzzing tool requires comparatively less number of
attempts to successfully create an evasive attack code. The
highest number of attempts among the five run-times is 22,
which indicates that the fuzzing tool first started with the
Branch Misp HPCs block. It tries 20 different values for the
loop counter parameter to evade the detection. In the end,
it switches the fuzzing block to Cache HPCs, and after two
additional attempts, the attack finally bypasses the detection.
The average time to create the modified fuzzed version of the
attack code is 52.2 seconds calculated over five run-times. The
inserted modules incur an average time overhead of 1.2 times
compared to the execution time of the original attack code.

In Table V, it is shown that all of our fuzzing blocks are
capable of evading the detection by modifying the Spectre v2
attack code. Interestingly, the fuzzing tool does not even have
to go through multiple iterations to try different values for each
parameter in each fuzzing block to avoid detection. However,
it also indicates that our initial selection of values for the
parameters might be relatively higher than it actually requires
to avoid the detection for this detection tool. For example,
the fuzzing tool starts by initializing the memory length
from 10000 memory operations for the Cache HPCs block
(Table III), which incurs around 1.5 times time-overhead. Al-
though the fuzzing tool can bypass the detection tool with just
one attempt, the initial parameter value may not be the most
optimum value in terms of the overhead. This result shows
that there is a trade-off between speed and time overhead.
The range of the input variables and the step values for each
of these fuzzing blocks can be set by the attacker through a
configuration file before implementing the fuzzing tool. Thus,
the attacker will have the option to choose the best trade-off
options based on specific scenarios. As we mentioned earlier,
all the modules can evade the detection for Spectre v2 with just
one attempt; hence, the average time to find the appropriate
fuzzing takes only 7.98 sec with an average time-overhead of
1.4 times compared to the baseline attack code.
Detection Tool 3. Detection Tool 3 targets Flush+Reload
attacks, and the tool is trained with cache-related HPCs.

UNDER REVIEW 9

TABLE V: Performance evaluation of the Fuzzing tool against
Detection Tool 2

Detection Tool 2 (Spectre v1)
Run
Time

Selected
Module

Tuned
Param.

of
Attempt

Time
Spent

Time
Overhead

#1 Cache HPCs 20000 2 16.7s ×1.3
#2 Total Inst HPCs 20 2 20.5s ×1.04
#3 Branch Inst HPCs 30000 1 8.8s ×1.3
#4 Cache HPCs 20000 22 205.9s ×1.3
#5 Branch Inst HPCs 30000 1 9.2s ×1.3

Avg. 52.2s ×1.2

Detection Tool 2 (Spectre v2)

#1 Branch Inst HPCs 30000 1 7.8s ×1.6
#2 Cache HPCs 10000 1 7.5s ×1.5
#3 Total Inst HPCs 10 1 8.8s ×1.07
#4 Cache HPCs 10000 1 7.4s ×1.1
#5 Branch Misp HPCs 30000 1 8.4s ×1.8

Avg. 7.98s ×1.4

Since the Spectre-type attacks are not in the scope, branch-
related HPCs are not included in the counter list. More
importantly, the detection model leverages process-specific
monitoring, leading to less noisy measurements compared
to other detection tools. This tool only captures the counter
values every 100 encryption rounds. We noticed that benign
workloads have considerably less number of cache misses and
the cache-related fuzzing blocks always increase the counter
values. Hence, increasing the counter values is not a viable
option to bypass the detection tool. The only module that
works against Flush+Reload is the Randomize attack fuzzing
block as explained in Section V. The fuzzing block controls
the number of attacks per 100 encryption while maintaining
the leakage percentage as 100%. The fuzzing tool is capable
of evading the detection with 4 attempts by restricting the
number of attacks up to 70 out of 100 per encryption. Since
the monitoring time for the attack code is longer than the other
detection tools, the fuzzing process takes around 665 sec to
complete with a 100% leakage rate. The performance overhead
is only 1.4 times compared to the baseline attack code.
Detection Tool 4. Detection Tool 4 supports two separate
models targeting Spectre v1 and Spectre v2. Each of these
models is trained using four ML-based algorithms. The fuzzing
tool is tested to avoid all the models of Detection Tool 4.
Except for Total Inst HPCs, all the other fuzzing modules are
capable of fuzzing the attack codes in an evasive manner. The
performance evaluation of the proposed tool is demonstrated in
Table VI. The average time of the fuzzing tool to successfully
alter the Spectre v1 code is 89.6 seconds without losing
any leakage rate. For Cache HPCs module, the fuzzing tool
has to increase the memory initialization length up to 20000
bytes. The first run takes a considerably longer time to find
the evasive attack since it chose the inappropriate parameters
and fuzzing blocks in its initial tries. On the contrary, if the
fuzzing tool starts with Branch Inst HPCs block, it can find
the evasive attack code with only 1 attempt. However, the most
efficient fuzzing block is based on Total Inst HPCs block as
it only introduces 10% performance overhead for the attack
code. Our results show that we can bypass all the trained

TABLE VI: Performance evaluation of the Fuzzing tool against
Detection Tool 4

Detection Tool 4 (Spectre v1)
Run
Time

Selected
Module

Tuned
Param.

of
Attempt

Time
Spent

Time
Overhead (%)

#1 Cache HPCs 20000 22 191.0s ×1.3
#2 Total Inst HPCs 50 5 50.9s ×1.1
#3 Branch Inst HPCs 30000 21 183.5s ×1.3
#4 Cache HPCs 20000 2 14.6s ×1.3
#5 Branch Inst HPCs 30000 1 7.8s ×1.3

Avg. 89.6s ×1.3

Detection Tool 4 (Spectre v2)

#1 Branch Misp HPCs 30000 1 8.0s ×1.8
#2 Cache HPCs 20000 2 13.7s ×1.5
#3 Branch Inst HPCCs 30000 1 7.2s ×1.5
#4 Total Inst HPCs 20 2 13.8s ×1.1
#5 Cache HPCs 20000 2 13.8s ×1.5

Avg. 11.3s ×1.5

models for Spectre-v1 in Detection Tool 4 with three fuzzing
blocks in an average of 89.6 seconds of fuzzing run. The
average performance overhead is only 1.3 times compared to
the baseline attack code.

For Spectre v2, we observed that the same fuzzing blocks
are capable of evading the detection. The branch-related blocks
almost act in a similar manner as we have seen for Spectre
v1. The Cache HPCs module can evade the detection with
20,000 memory operations inserted into the attack code. The
average time to complete the fuzzing is 11.3 seconds as the
the number of attempts is comparatively less than Spectre-
v1 scenario. Interestingly, the average leakage rate of Spectre
v2 without fuzzing is 80.6% in our test setup. After the
fuzzing, the computed average leakage rate over the five run-
times is 78.8%, which is comparable with the original leakage
rate. Our fuzzing blocks introduce 1.5 times performance
overhead on average to successfully evade the detection. It
is important to note that the same parameters for both branch
instructions and cache operations are required for Spectre-v1
and Spectre-v2 attacks. We also show that decreasing the total
number of instructions slightly can reduce the efficiency of
Detection Tool 4 significantly while incurring a small amount
of overhead to the attack code.

VIII. RELATED WORK

A. ML-based Microarchitecture Attack Detection Techniques

While there are several microarchitecture attack detection
tools, the early ones mostly relied on statistical measures
such as threshold decisions [16], dynamic time warping [39],
and sudden changes in the counter values [6]. However, the
decisions made by these tools can be bypassed with simple
changes in the counters since there is no advanced learning
process. Hence, many detection tools started to leverage ML
models to learn the complex behavior of benign and attack
executions. One of the first ML-based detection tools [8] is
based on neural networks to distinguish benign and attack
executions. Later, other tools leveraged ML models such as
SVM [3], [25], DT [29], kNN [25], CNN [3], and LSTMs [18].

UNDER REVIEW 10

Each detection tool relies on the capabilities of ML models in
learning complex behaviors, which has advanced the detection
accuracy and diversity of targeted attack implementations.
Both supervised [28] and unsupervised [6], [8], [14], [18]
learning techniques have been utilized to distinguish benign
and attack workloads. In the unsupervised learning approach,
tools train the model with benign execution, and attack ex-
ecutions are treated as anomalies. This approach is more
vulnerable to evasion attacks because attack codes hidden
in benign applications can stress the counter values slightly,
behaving like a benign application [22]. Hence, supervised
detection models are more robust against evasion attacks as
long as the benign dataset is sufficiently diverse.

B. Evasion against ML-based Detectors

ML-based models are used in many security-critical fields
to detect ongoing attack attempts. The most popular use case
for ML models is the malware detection [5], [38]. However,
since the first example of adversarial attacks [32] on ML
models, ML-based malware detectors have become a target
for adversarial attacks [7], [10], [12]. Similarly, individual
ML-based microarchitectural attack detection tools are also
evaluated against different variants of the same attack by
changing the leakage rate [23], [34], [37]. However, these
studies only evaluate their own models against evasive attacks.
Song et al. [35] create specially crafted code snippets to
bypass the profiling-based detection systems. Their technique
is only tested on cache-based attacks with a limited number
of profiling detection tools. A recent study [22] evaluated the
microarchitecture detection models with different criteria such
as accuracy, detection speed, overhead, and threat models. The
paper also creates evasive attack codes manually by placing
attack primitives into benign applications. Due to the lack of
open-source detection models, this study only considers two
models to evaluate their effectiveness against evasive attacks.
On the other hand, our study creates an automated fuzzing
framework to evaluate multiple models that are not open-
source.

IX. DISCUSSION AND LIMITATIONS

Benign Dataset Selection. The benign dataset selection is
important for creating a robust detection tool. When the
tool is trained with a diverse set of benign applications,
the detection tool outputs less number of false positives and
negatives. However, we noticed that most of the studies choose
workloads with single-threaded and less memory operations.
Hence, the counter values remain lower than a full-speed
attack execution, making it easier to distinguish benign and
attack executions and achieving success rates close to 100%.
There are multi-threaded workloads that utilize a high number
of CPU cores, leading to even higher counter values compared
to attack executions. We believe this type of benign dataset is
more realistic to evaluate the effectiveness of the detection
models.
Limitations on Counter Manipulation. Depending on the
counter-sampling resolution, the fuzzing blocks have a limited
amount of time to manipulate the counter values. Especially,

the upper bound relies on the sampling resolution. However,
changing a counter value could also affect other counters as
well. As an example, the cache references counter is affected
by cache miss counters because any request to cache is counted
as an event in the cache references counter. Hence, manipulat-
ing one counter could also change other counters in parallel.
This makes it difficult to isolate different counters from each
other if the detection model monitors related counters.
Transferability of the Evasive Attack Codes. It is still
not clear whether an evasive attack code can bypass other
models as well. This phenomenon still remains unanswered
when multiple detection models are trained with different
counters, learning algorithms, resolutions, and threat scenarios.
However, many detection tools have no public repositories,
which makes it more challenging to evaluate their effective-
ness against evasive attacks. We also leave the transferability
of evasive attacks between different microarchitectures as a
potential future work.

X. CONCLUSION

Our study develops an automated fuzzing-based evasive
attack code generation tool. The fuzzing tool is evaluated
against four ML-based detection methods to show its ef-
fectiveness in generating evasive attack code snippets while
preserving the leakage rate. Our fuzzing tool incurs a small
amount of time overhead on the attack code to successfully
bypass the detection tools. In our threat model, we assume no
knowledge of the ML model used in the detection tool, which
makes the fuzzing tool more applicable in black-box scenarios.
We conclude that ML-based detection tools are susceptible
to evasive attacks that can be created with minimal manual
attack code modification. The system security community is
encouraged to explore more robust training methods to create
more comprehensive detection tools.

REFERENCES

[1] Intel performance counter monitor. https://github.com/intel/pcm.
[2] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting

secret keys via branch prediction. In Topics in Cryptology–CT-RSA
2007: The Cryptographers’ Track at the RSA Conference 2007, San
Francisco, CA, USA, February 5-9, 2007. Proceedings, pages 225–242.
Springer, 2006.

[3] Bilal Ali Ahmad. Real time detection of spectre and meltdown attacks
using machine learning. arXiv preprint arXiv:2006.01442, 2020.

[4] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garcı́a, and Nicola Tuveri. Port contention for fun and
profit. In 2019 IEEE Symposium on Security and Privacy (SP), pages
870–887. IEEE, 2019.

[5] A Ananya, A Aswathy, TR Amal, PG Swathy, P Vinod, and Shojafar
Mohammad. Sysdroid: a dynamic ml-based android malware analyzer
using system call traces. Cluster Computing, 23(4):2789–2808, 2020.

[6] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisen-
barth. Cacheshield: Detecting cache attacks through self-observation. In
Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, pages 224–235, 2018.

[7] Fabrı́cio Ceschin, Marcus Botacin, Heitor Murilo Gomes, Luiz S
Oliveira, and André Grégio. Shallow security: On the creation of
adversarial variants to evade machine learning-based malware detectors.
In Proceedings of the 3rd Reversing and Offensive-oriented Trends
Symposium, pages 1–9, 2019.

[8] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detec-
tion of cache-based side-channel attacks using hardware performance
counters. Applied Soft Computing, 49:1162–1174, 2016.

UNDER REVIEW 11

[9] Arnaldo Carvalho De Melo. The new linux’perf’tools. In Slides from
Linux Kongress, volume 18, pages 1–42, 2010.

[10] Luca Demetrio, Scott E Coull, Battista Biggio, Giovanni Lagorio,
Alessandro Armando, and Fabio Roli. Adversarial exemples: A survey
and experimental evaluation of practical attacks on machine learning for
windows malware detection. ACM Transactions on Privacy and Security
(TOPS), 24(4):1–31, 2021.

[11] Jonas Depoix and Philipp Altmeyer. Detecting spectre attacks by
identifying cache side-channel attacks using machine learning. Advanced
Microkernel Operating Systems, 75:48, 2018.

[12] Sai Manoj Pudukotai Dinakarrao, Sairaj Amberkar, Sahil Bhat, Abhi-
jitt Dhavlle, Hossein Sayadi, Avesta Sasan, Houman Homayoun, and
Setareh Rafatirad. Adversarial attack on microarchitectural events
based malware detectors. In Proceedings of the 56th Annual Design
Automation Conference 2019, pages 1–6, 2019.

[13] Debopriya Roy Dipta and Berk Gulmezoglu. Df-sca: dynamic frequency
side channel attacks are practical. In Proceedings of the 38th Annual
Computer Security Applications Conference, pages 841–853, 2022.

[14] Debopriya Roy Dipta and Berk Gulmezoglu. Mad-en: Microarchitec-
tural attack detection through system-wide energy consumption. IEEE
Transactions on Information Forensics and Security, 2023.

[15] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation leak-aside buffer: Defeating cache side-channel protections with
{TLB} attacks. In 27th USENIX Security Symposium (USENIX Security
18), pages 955–972, 2018.

[16] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+ flush: a fast and stealthy cache attack. In Detection of Intrusions
and Malware, and Vulnerability Assessment: 13th International Confer-
ence, DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Proceedings
13, pages 279–299. Springer, 2016.

[17] Berk Gülmezoğlu, Mehmet Sinan Inci, Gorka Irazoqui, Thomas Eisen-
barth, and Berk Sunar. A faster and more realistic flush+ reload attack
on aes. In Constructive Side-Channel Analysis and Secure Design: 6th
International Workshop, COSADE 2015, Berlin, Germany, April 13-14,
2015. Revised Selected Papers 6, pages 111–126. Springer, 2015.

[18] Berk Gulmezoglu, Ahmad Moghimi, Thomas Eisenbarth, and Berk
Sunar. Fortuneteller: Predicting microarchitectural attacks via unsuper-
vised deep learning. arXiv preprint arXiv:1907.03651, 2019.

[19] Berk Gulmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk Sunar.
Perfweb: How to violate web privacy with hardware performance events.
In Computer Security–ESORICS 2017: 22nd European Symposium on
Research in Computer Security, Oslo, Norway, September 11-15, 2017,
Proceedings, Part II 22, pages 80–97. Springer, 2017.

[20] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisen-
barth, and Berk Sunar. Cache attacks enable bulk key recovery on the
cloud. In Cryptographic Hardware and Embedded Systems–CHES 2016:
18th International Conference, Santa Barbara, CA, USA, August 17-19,
2016, Proceedings 18, pages 368–388. Springer, 2016.

[21] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution.
Communications of the ACM, 63(7):93–101, 2020.

[22] William Kosasih, Yusi Feng, Chitchanok Chuengsatiansup, Yuval
Yarom, and Ziyuan Zhu. Sok: Can we really detect cache side-channel
attacks by monitoring performance counters?

[23] Yusuf Kulah, Berkay Dincer, Cemal Yilmaz, and Erkay Savas. Spy-
detector: An approach for detecting side-channel attacks at runtime.
International Journal of Information Security, 18:393–422, 2019.

[24] Congmiao Li and Jean-Luc Gaudiot. Online detection of spectre attacks
using microarchitectural traces from performance counters. In 2018
30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pages 25–28. IEEE, 2018.

[25] Congmiao Li and Jean-Luc Gaudiot. Detecting spectre attacks using
hardware performance counters. IEEE Transactions on Computers,
71(6):1320–1331, 2021.

[26] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse engineering intel last-
level cache complex addressing using performance counters. In Research
in Attacks, Intrusions, and Defenses: 18th International Symposium,
RAID 2015, Kyoto, Japan, November 2-4, 2015. Proceedings 18, pages
48–65. Springer, 2015.

[27] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. Papi:
A portable interface to hardware performance counters. In Proceedings
of the department of defense HPCMP users group conference, volume
710, 1999.

[28] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Maham
Chaudhry, Vianney Lapotre, and Guy Gogniat. Nights-watch: A cache-

based side-channel intrusion detector using hardware performance coun-
ters. In Proceedings of the 7th International Workshop on Hardware and
Architectural Support for Security and Privacy, pages 1–8, 2018.

[29] Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Rao
Naveed Bin Rais, Vianney Lapotre, and Guy Gogniat. Run-time detec-
tion of prime+ probe side-channel attack on aes encryption algorithm.
In 2018 Global Information Infrastructure and Networking Symposium
(GIIS), pages 1–5. IEEE, 2018.

[30] Maria Mushtaq, Jeremy Bricq, Muhammad Khurram Bhatti, Ayaz
Akram, Vianney Lapotre, Guy Gogniat, and Pascal Benoit. Whisper:
A tool for run-time detection of side-channel attacks. IEEE Access,
8:83871–83900, 2020.

[31] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Ange-
los D Keromytis. The spy in the sandbox: Practical cache attacks in
javascript and their implications. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages
1406–1418, 2015.

[32] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Proceedings of the 2017 ACM on Asia
conference on computer and communications security, pages 506–519,
2017.

[33] Naman Patel, Prashanth Krishnamurthy, Hussam Amrouch, Jörg Henkel,
Michael Shamouilian, Ramesh Karri, and Farshad Khorrami. Towards
a new thermal monitoring based framework for embedded cps device
security. IEEE Transactions on Dependable and Secure Computing,
19(1):524–536, 2020.

[34] Nikolaos Foivos Polychronou, Pierre-Henri Thevenon, Maxime Puys,
and Vincent Beroulle. Madman: Detection of software attacks targeting
hardware vulnerabilities. In 2021 24th Euromicro Conference on Digital
System Design (DSD), pages 355–362. IEEE, 2021.

[35] Minkyu Song, Taeweon Suh, and Gunjae Koo. Vizard: Passing over
profiling-based detection by manipulating performance counters. IEEE
Access, 2023.

[36] Zhongkai Tong, Ziyuan Zhu, Zhanpeng Wang, Limin Wang, Yusha
Zhang, and Yuxin Liu. Cache side-channel attacks detection based on
machine learning. In 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom),
pages 919–926, 2020.

[37] Wubing Wang, Guoxing Chen, Yueqiang Cheng, Yinqian Zhang, and
Zhiqiang Lin. Specularizer: Detecting speculative execution attacks
via performance tracing. In Detection of Intrusions and Malware,
and Vulnerability Assessment: 18th International Conference, DIMVA
2021, Virtual Event, July 14–16, 2021, Proceedings 18, pages 151–172.
Springer, 2021.

[38] Jason Zhang. Mlpdf: an effective machine learning based approach for
pdf malware detection. arXiv preprint arXiv:1808.06991, 2018.

[39] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. Cloudradar: A real-
time side-channel attack detection system in clouds. In Research in
Attacks, Intrusions, and Defenses: 19th International Symposium, RAID
2016, Paris, France, September 19-21, 2016, Proceedings 19, pages
118–140. Springer, 2016.

Debopriya Roy Dipta is currently a third-year PhD
student in Computer Engineering at Iowa State Uni-
versity. He completed his B.Sc. degree in Electrical
and Electronic Engineering from Khulna University
of Engineering and Technology, Bangladesh. His re-
search interests include Micro-architectural Attacks,
Side-Channel data analysis, Hardware Security, and
Applications of Machine Learning. He is currently
working on micro-architectural security with deep
learning.

UNDER REVIEW 12

Jonathan Tan is currently a senior in Computer
Engineering at Iowa State University and is work-
ing towards completing his undergrad and getting
his master’s in computer engineering. His area of
interest is microarchitecture security and hardware
accelerator design for Machine Learning. He pre-
sented at the National Conference on Undergraduate
Research (NCUR) 2023. He also interned at Eaton
as a firmware intern.

Berk Gulmezoglu is an Assistant Professor in the
Electrical and Computer Engineering Department of
Iowa State University. He received his PhD degree
from Worcester Polytechnic Institute and his B.S.
and M.S. degrees from Ihsan Dogramaci Bilkent
University. His research interests include attacks on
cryptographic implementations, microarchitectural
attacks, Machine Learning applications on hardware
security and side-channel attacks in the cloud.

