
DefWeb: Defending User Privacy against Cache-based Website Fingerprinting Attacks with Intelligent Noise Injection

Seonghun Son, Debopriya Roy Dipta, Berk Gulmezoglu Microarchitecture and Artificial Intelligence Security (MAIS) Laboratory, Iowa State University

Introduction

Results

Conclusion

Method

v Motivation:
• Issue

- Cache-based Website Fingerprinting (WF) attacks violate user privacy by
exploiting shared CPU resources, even on Incognito or Tor browsers.

• Why it matters?
- Existing defense techniques either fail to fully obfuscate data or cause

significant performance overhead.
- Precedent work

- Oren et al. (2015) [1] : Cache attacks in JavaScript environments with an
attack accuracy of 78.4% and mitigation of 76.2%

- Shusterman et al. (2019) [2]: Cache occupancy based WF attack, achieving
95.7% accuracy and mitigated to 62.0% through noise injection.

- Cook et al. (2022) [3]: Loop-counting based WF attack with an accuracy of
95.7%, which was reduced to 46.2% using randomized timers.

v Proposed Solution:
• Solution

- A novel defense mechanism that injects intelligent noise using a generative
learning model to protect user privacy during web browsing activity.

• Objective
- Decrease the attacker Machine Learning(ML) model’s accuracy with minimal

performance overhead.

Web User Attacker
Website

Fingerprint (WF)
WF attack with

Deep Learning (DL)

v Overview
• DefWeb employs a dynamic noise injection (noise template) utilizing a generative

learning deep learning model (Variational Autoencoder).

• Online phase: Training the defense mechanism by collecting WF data and
generating noise templates

• Offline phase: Applying the generated noise in real-time during website
browsing to obfuscate the fingerprints and protect user privacy

v Data Collection
• Process: Collect website fingerprints via the cache occupancy channel [2] and

loop-counting [3]

Offline Phase Online Phase

1. 360.cn
2. 9gag.com
3. abs-cbn.com
4. adobe.com
5. airbnb.com
6. aliexpress.com
7. allegro.pl
8. amazon.com
9. apple.com
10. archive.org
11. baidu.com
12. bbc.com
13. bing.com
14. booking.com
15. bukalapak.com
16. canva.com
17. chase.com
18. craigslist.org
19. csdn.net
20. dailymail.co.uk

21. dailymotion.com
22. digikala.com
23. discord.com
24. dropbox.com
25. ebay.com
26. espn.com
27. espncricinfo.com
28. etsy.com
29. exoclick.com
30. flipkart.com
31. force.com
32. foxnews.com
33. github.com
34. globo.com
35. godaddy.com
36. goodreads.com
37. google.com
38. healthline.com
39. hulu.com
40. ikea.com

41. imdb.com
42. imgur.com
43. indeed.com
44. intuit.com
45. jd.com
46. kompas.com
47. linkedin.com
48. liputan6.com
49. live.com
50. mail.ru
51. mediafire.com
52. medium.com
53. mozila.org
54. msn.com
55. naver.com
56. netflix.com
57. nih.gov
58. nordstrom.com
59. office.com
60. okezone.com ……

v Latent Space Representation Using Variational Autoencoder (VAE)
• High-dimensional WF datasets to a lower-dimensional latent space utilizing VAE
• Objective: Compress meaningful features and separate WF into clusters in the

latent space

Version: 101.0.4951.64

Version: 111.0

Website Fingerprint
Datasets

Version: 10.5.10

Before adding the distance vector After adding the distance vector New noisy latent space vector

v Noise Template Creation
• Generate minimal noise templates manipulate in the latent space
• Process: Calculate the distance between clusters in the latent space and

generate noisy WF datasets to obfuscate the WF

Eyes

Nose

Ears

Mouth

Latent SpaceEncoder DecoderInput Data Output DataLatent SpaceEncoder DecoderInput Data Output Data

Structure of Variational Autoencoder (VAE) VAE Example

Clusters in the latent Space (W=google.com, amazon.com, D=2)

Alexa’s Top 150 website list

v Practical Noise Injection utilizing Self-Modifying Code (SMC)
• Inject practical noise in microarchitecture during website rendering
• Process:
• Misalignment
• Segmentation into Dynamic Noise Block from Practical Noise Template
• Look-up table creation
• Practical noise injection in Intel TigerLake microarchitecture

v Simulation Noise Template Injection
• Inject simulation noise created from VAE algorithm

v Accuracy Degradation
• The classification accuracy for 100 websites drops to 28.8%, 29.7%, and 5.2%

accuracy for Chrome, Firefox, and Tor.
• The classification accuracy for 150 websites drops to 24%

v Performance Overhead
• Performance overhead tool WebAPI

and Selenium library to measure
rendering time.

• It is a better performance tool
compared with Benchmarks since
we directly check the overhead in a
web environment,

Dim. Acc. Re-Con. Noise
dataset Injected

50 53.8 90.6 6.1 5.2

100 93.8 94.4 6.3 4.5

200 97.4 93.7 24.9 23.3

300 97.7 95.6 36.8 33.1

𝐿!" = 𝐿! + 𝐷!,$	

𝑆" = 𝑉% 𝐿!"

𝑤ℎ𝑒𝑟𝑒	𝑖, 𝑗 = 0,⋯ ,𝑤 − 1
Defense

technique
Cache

Shaping
Interrupt
Injection DefWeb

Performance
Overhead

51.4 –
71.8% 15.7% 9.5%

Attack Cache-
Sweep

Interrupt
Injection

DefWeb
Chrome &

Firefox Tor

Loop-Counting Attack[4] x1.03 x1.42 x3.32
x9.2

Sweep-Counting [32] x1.03 x1.54 x3.93

WF attack accuracy degradation

(a) Original WF, (b) Noise Template, (c) Noise injected WF

(a)

(b)

(c)

Dimension selection on the accuracy (%)

Browser
CNN

C = 2 C = 3 C = 4 C = 5

Chrome 3.9
± 3.0%

4.8 ±
3.2%

24.6 ±
10.6%

32.7 ±
19.7%

Firefox 1.6	±
1.0%

1.3 ±
0.8%

5.7 ±
4.1%

16.8 ±
12.7%

Shift value c selection based on accuracy (%)

Practical noise exampleSteps of creating practical noise

SMC template website 37 to website 5

SMC template website 7 to website 50

Performance overhead

v Future work
• SMC creation in the browser environment can be used
• The transferability of DefWeb can be investigated

v Conclusion
• DefWeb demonstrates that intelligent noise injection can decrease the attacker

Deep learning model’s accuracy significantly compared to other method.
• The performance overhead introduced by DefWeb is less than other techniques.

v References
 [1] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D Keromytis. 2015. The spy in the sandbox:
 Practical cache attacks in javascript and their implications. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security. 1406–1418.
 [2] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal, Yossi Oren, and Yuval Yarom. 2019. Robust

website fingerprinting through the cache occupancy channel. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 639–656.
 [3] JackCook,JulesDrean,JonathanBehrens,andMengjiaYan.2022.There’salways a bigger fish: a clarifying analysis of a machine-
 learning-assisted side-channel attack.. In ISCA. 204–217.

