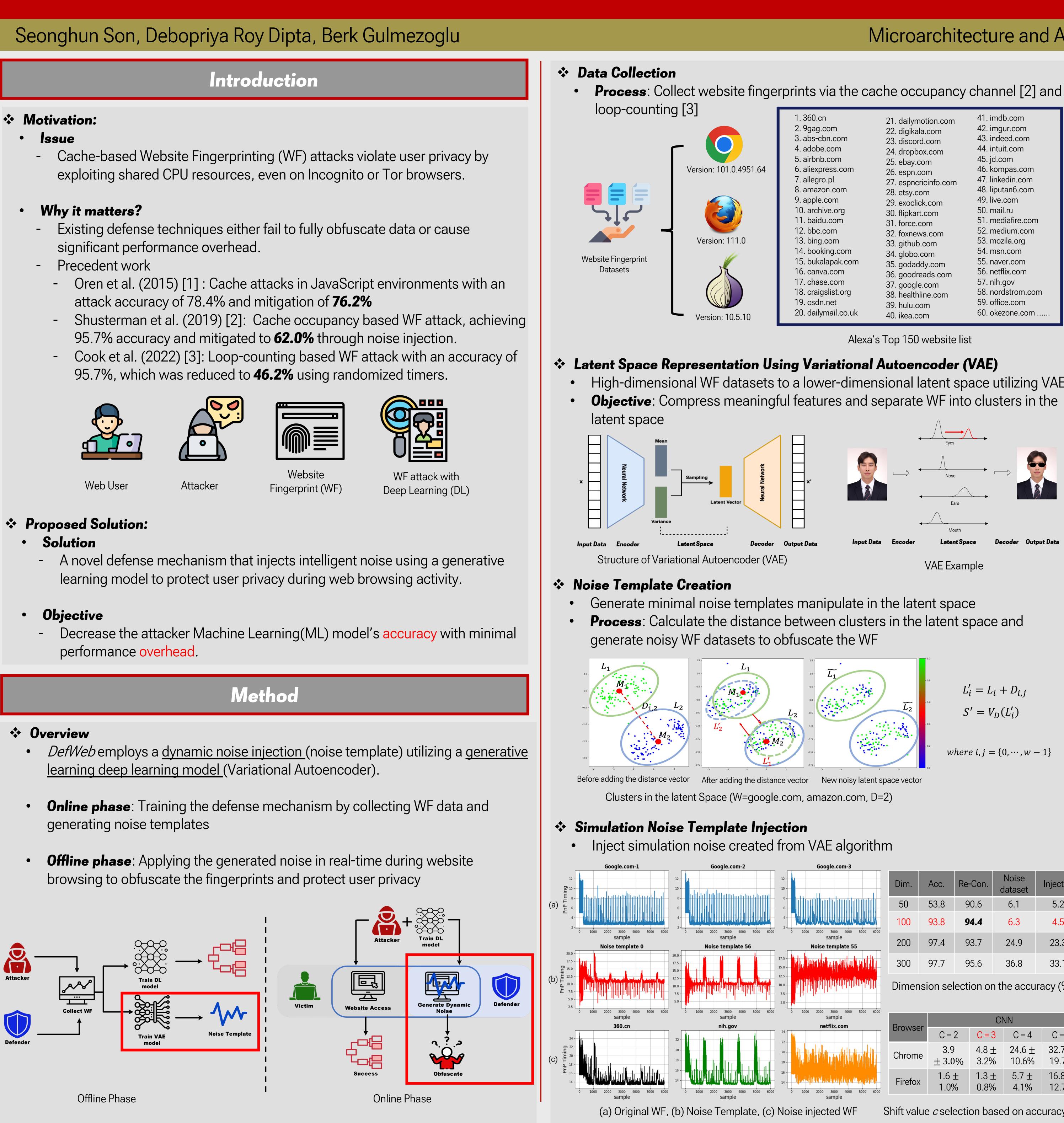
DefWeb: Defending User Privacy against Cache-based Website Fingerprinting Attacks with Intelligent Noise Injection

- significant performance overhead.
- attack accuracy of 78.4% and mitigation of **76.2%**



performance overhead.

- learning deep learning model (Variational Autoencoder).
- generating noise templates

Microarchitecture and Artificial Intelligence Security (MAIS) Laboratory, Iowa State University

า วm า	 21. dailymotion.com 22. digikala.com 23. discord.com 24. dropbox.com 25. ebay.com 26. espn.com 27. espncricinfo.com 28. etsy.com 	 41. imdb.com 42. imgur.com 43. indeed.com 44. intuit.com 45. jd.com 46. kompas.com 47. linkedin.com 48. liputan6.com
om ו	27. espncricinfo.com	47. linkedin.com
	29. exoclick.com 30. flipkart.com 31. force.com	49. live.com 50. mail.ru 51. mediafire.com
m	32. foxnews.com 33. github.com	52. medium.com 53. mozila.org 54. msn.com
m com	34. globo.com 35. godaddy.com 36. goodreads.com 37. google.com	55. naver.com 56. netflix.com 57. nih.gov
rg	38. healthline.com 39. hulu.com	58. nordstrom.com 59. office.com
o.uk	40. ikea.com	60. okezone.com

-3						
	Dim.	Acc.	Re-Con.	Noise dataset	Injected	
	50	53.8	90.6	6.1	5.2	
000 5000 6000	100	93.8	94.4	6.3	4.5	
e 55	200	97.4	93.7	24.9	23.3	
	300	97.7	95.6	36.8	33.1	
	Dimension selection on the accuracy (%)					

ooo	Dreiveer	CNN			
	Browser	C = 2	C = 3	C = 4	C = 5
	Chrome	3.9 ± 3.0%	4.8 <u>+</u> 3.2%	24.6 <u>+</u> 10.6%	32.7 <u>+</u> 19.7%
00	Firefox	1.6 <u>+</u> 1.0%	1.3 <u>+</u> 0.8%	5.7 <u>+</u> 4.1%	16.8 <u>+</u> 12.7%

Shift value *c* selection based on accuracy (%)

Practical Noise Injection utilizing Self-Modifying Code (SMC) Inject practical noise in microarchitecture during website rendering **Process**: Misalignment Segmentation into Dynamic Noise Block from Practical Noise Template Look-up table creation Practical noise injection in Intel TigerLake microarchitecture (a) Average Noise Template (b) Expansion (c) Segmentation (d) Parameter extraction Steps of creating practical noise Results Accuracy Degradation The classification accuracy for 100 websites drops to 28.8%, 29.7%, and 5.2% accuracy for Chrome, Firefox, and Tor. The classification accuracy for 150 websites drops to 24%

	Cache- Sweep	Interrupt Injection	DefWeb	
Attack			Chrome & Firefox	Tor
Loop-Counting Attack[4]	x1.03	x1.42	x3.32	x9.2
Sweep-Counting [32]	x1.03	x1.54	x3.93	X9.2
WF attack accuracy degradation				

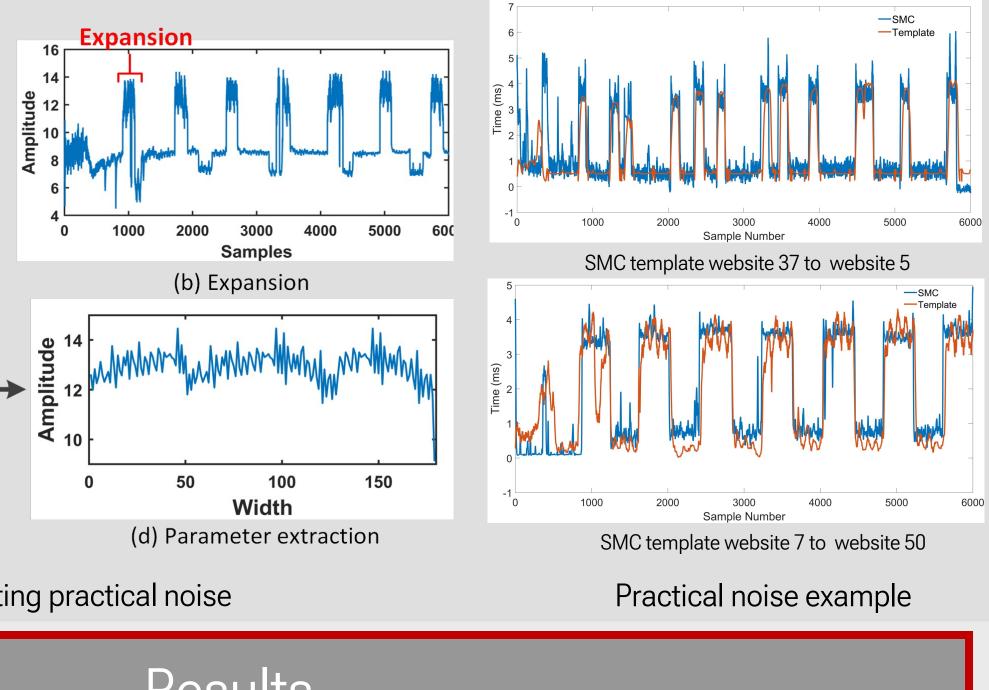
Performance Overhead

- Performance overhead tool *WebAPI* \bullet and *Selenium* library to measure rendering time.
- It is a better performance tool compared with Benchmarks since we directly check the overhead in a web environment,

Future work

* Conclusion

* References

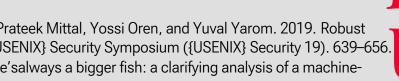

 Keterences

 [1] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D Keromytis. 2015. The spy in the sandbox:

 Practical cache attacks in javascript and their implications. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

 [2] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal, Yossi Oren, and Yuval Yarom. 2019. Robust website fingerprinting through the cache occupancy channel. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 639–656.
 [3] JackCook, JulesDrean, JonathanBehrens, and MengjiaYan. 2022. There's always a bigger fish: a clarifying analysis of a machinelearning-assisted side-channel attack.. In ISCA. 204–217

100			1 1 1 1 1 1		
80 -					
- 00 - 00 - 00			_		
40 - 0		_			
	. 				
0 of control					
Defense	Cache	Interrupt			


Defense technique	Cache Shaping	Interrupt Injection	DefWeb
Performance Overhead	51.4 – 71.8%	15.7%	9.5%

Performance overhead

Conclusion

SMC creation in the browser environment can be used The transferability of *DefWeb* can be investigated

DefWeb demonstrates that intelligent noise injection can decrease the attacker Deep learning model's accuracy significantly compared to other method. The performance overhead introduced by *DefWeb* is less than other techniques.

