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1 INTRODUCTION

Large datasets often contain information that is uncertain
in nature. For example, given people A and B, it may not
be possible to definitively assert a relation of the form “A
knows B” using available information. Our confidence in
such relations are commonly quantified using probability,
and we say that the relation exists with a probability of p, for
some value p determined from the available information. In
this work, we focus on uncertain graphs, where our knowl-
edge is represented as a graph, and there is uncertainty in the
presence of each edge in the graph. Uncertain graphs have
been used extensively in modeling, for example, in commu-
nication networks [1, 2, 3], social networks [4, 5, 6, 7, 8, 9],
protein interaction networks [10, 11, 12], and regulatory
networks in biological systems [13].

Identification of dense substructures within a graph is
a fundamental task, with numerous applications in data
mining, including in clustering and community detection
in social and biological networks [14], the study of the co-
expression of genes under stress [15], integrating different
types of genome mapping data [16]. Perhaps the most
elementary dense substructure in a graph, also probably the
most commonly used, is a clique, a completely connected
subgraph. We are typically interested in a maximal clique,
which is a clique that is not contained within any other
clique. Enumerating all maximal cliques from a graph is one

of the most basic problems in graph mining, and has been
applied in many settings, including in finding overlapping
communities from social networks [14, 17, 18, 19], finding
overlapping multiple protein complexes [20], analysis of
email networks [21] and other problems in bioinformat-
ics [22, 23, 24].

While the notion of a dense substructure and methods
for enumerating dense substructures are well understood in
a deterministic graph, the same is not true in the case of an
uncertain graph. This is an important open problem today,
given that many datasets increasingly incorporate data that
is noisy and uncertain in nature. Uncertainty can result
from a lack of data. For example, in constructing a social
network from data collected through sensors, some com-
munications between individuals maybe missed, or maybe
anonymized [4]. In some cases, relationships themselves
are probabilistic in nature; for example, the relation of
one person influencing another in a social network [25].
In biological networks such as protein–protein interaction
networks, it is known that there are frequent errors in
finding interactions and our knowledge is best modeled
probabilistically [10].

In this work, we consider the analog of a maximal clique
in an uncertain graph. Intuitively, a clique in an uncertain
graph is a set of vertices that has a high probability of being
a completely connected subgraph. In other words, when we



sample from the uncertain graph, this set is likely to form a
(deterministic) clique. Finding such sets of vertices enables
us to unearth robust communities within an uncertain graph,
for example, a group of proteins such that it is likely that
each protein interacts with each other protein. We present
a systematic study of the problem of identifying cliques
within an uncertain graph. A preliminary version of this
work appeared in [26].

1.1 Our Contributions

First, we present a precise definition of a maximal clique in
an uncertain graph, leading to the notion of an α-maximal
clique, for parameter 0 < α ≤ 1. A set of vertices U
in an uncertain graph is an α-maximal clique if U is a
clique with probability at least α, and there does not exist
a vertex set U ′ such that U ⊂ U ′ and U ′ is a clique with
probability at least α. When α = 1, the above definition
reduces to the well understood notion of a maximal clique
in a deterministic graph.

Number of Maximal Cliques. We first consider a basic
question on maximal cliques in an uncertain graph: how
many α-maximal cliques can be present within an uncertain
graph? For deterministic graphs, this question was first
considered by Moon and Moser [27] in 1965, who presented
matching upper and lower bounds for the largest number
of maximal cliques within a graph; on a graph with n
vertices, the largest possible number of maximal cliques is
3

n
3 1. For the case of uncertain graphs, we present the first

matching upper and lower bounds for the largest number of
α-maximal cliques in a graph on n vertices. We show that
for any 0 < α < 1, the maximum number of α-maximal
cliques possible in an uncertain graph is

( n
bn/2c

)
, i.e. there

is an uncertain graph on n vertices with
( n
bn/2c

)
uncertain

maximal cliques and no uncertain graph on n vertices can
have more than

( n
bn/2c

)
α-maximal cliques.

Algorithm for Enumerating All Maximal Cliques.
We present a novel algorithm, MULE (Maximal Uncertain
cLique Enumeration), for enumerating all α-maximal
cliques within an uncertain graph. MULE is based on a
depth-first-search of the graph, combined with optimiza-
tions for limiting exploration of the search space, and a
fast way to check for maximality based on an incremental
computation of clique probabilities. We present a theoretical
analysis showing that the worst-case runtime of MULE is
O (n · 2n), where n is the number of vertices. This is nearly
the best possible dependence on n, since our analysis of the
number of maximal cliques shows that the size of the output
can be as much as O(

√
n · 2n). Such worst-case behavior

occurs only in graphs that are very dense; for typical graphs,
we can expect the runtime of MULE to be far better, as
we show in our experimental evaluation. We also present

1. This assumes that 3 divides n. If not, the expressions are slightly
different

an extension of MULE to efficiently enumerate only large
maximal cliques.

Note that the worst–case runtime of our algorithm is
not the same as an exhaustive search. The cost of checking
whether an uncertain clique is maximal or not can be as
large as Θ(n2). Considering that there are 2n subsets of
vertices of the graph, exhaustive search has a worst-case
runtime of O

(
n2 · 2n

)
, which is worse than our algorithm

by a factor of O(n).
Experimental Evaluation. We present an experimental

evaluation of MULE using synthetic as well as real-world
uncertain graphs. Our evaluation shows that MULE is prac-
tical and can enumerate maximal cliques in an uncertain
graph with tens of thousands of vertices, more than hundred
thousand edges and more than two million α-maximal
cliques. Interestingly, the observed runtime of this algorithm
is proportional to the size of the output. The real-world
graphs included a protein–protein interaction network, and
a collaboration network inferred from DBLP.
1.2 Related Work
There has been much recent work on mining from uncertain
graphs, including computing shortest paths [28], nearest
neighbors [29], clustering [30], enumerating frequent and
reliable subgraphs [31, 32, 33, 34, 35, 36], and distance-
constrained reachability [37]. The problem of enumerating
dense substructures is different from the above. In partic-
ular, the problem of finding reliable subgraphs is one of
finding subgraphs that are connected with a high probability.
However, these individual subgraphs are not required to be
dense and may be sparse. In contrast, we are interested in
finding subgraphs that are not just connected, but also fully
connected with a high probability. The most closely related
work to ours is on mining cliques from an uncertain graph
by Zou et. al [38]. Our work is different from theirs in
significant ways as elaborated below.

• While we focus on enumerating all α-maximal
cliques in a graph, they focus on a different problem,
that of enumerating the k cliques with the highest
probability of existence.

• We present bounds on the number of such cliques
that could exist, while by definition, their problem
requires them to output no more than k cliques.

• We provide a runtime complexity analysis of our
algorithm and show that it is near optimal. No
runtime complexity analysis was provided for the
algorithm presented in [38].

• We also provide an algorithm to enumerate only
large maximal uncertain cliques.

There is substantial prior work on maximal clique
enumeration from a deterministic graph. A popular algo-
rithm for maximal clique enumeration problem is the Bron-
Kerbosch algorithm [39], also based on depth-first-search.
Tomita et al. [40] improved the depth-first-search approach
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through a better strategy for pivot selection; their resulting
algorithm runs in time O(3

n
3 ), which is worst-case optimal,

due to the bound on the number of maximal cliques possi-
ble [27]. Further work on enumeration of maximal cliques
includes [41, 42, 43, 44, 45]. There is work on parallel
methods for enumerating maximal cliques and bicliques
from a large graph [46, 47].

Our algorithm uses the general structure of search pre-
sented in [39, 40]. However, unlike the case of a deter-
ministic maximal clique where it is easy to incrementally
maintain the set of vertices that can be added to the clique,
for an uncertain graph, this is more complex, since we
need to be aware of the change in clique probabilities.
Recomputing these can be expensive, and our algorithms
reduce this cost through an incremental computation. Our
runtime analysis and correctness proof need to take this into
account, and do not follow from the analysis in [39] or [40].

Roadmap. We present a problem definition in Section 2,
bounds on the number of α-maximal cliques in Section 3, an
algorithm to enumerate all α-maximal cliques in Section 4,
followed by experimental results in Section 5.

2 PROBLEM DEFINITION

An uncertain graph is a probability distribution over a set
of deterministic graphs. We deal with undirected simple
graphs, i.e. there are no self-loops or multiple edges. An
uncertain graph is a triple G = (V,E, p), where V is a set
of vertices, E ⊆ V × V is a set of (possible) edges, and
p : E → (0, 1] is a function that assigns a probability of
existence p(e) to each edge e ∈ E. As in prior work on
uncertain graphs, we assume that the existence of different
edges are mutually independent events.

Let n = |V | and m = |E|. Note that G is a distribution
over 2m deterministic graphs, each of which is a subgraph
of the undirected graph (V,E). This set of possible deter-
ministic graphs is called the set of “possible graphs” of the
uncertain graph G, and is denoted by D(G). Note that in
order to sample from an uncertain graph G, it is sufficient to
sample each edge e ∈ E independently with a probability
p(e).

In an uncertain graph G = (V,E, p), two vertices u and
v are said to be adjacent if there exists an edge {u, v} in
E. Let the neighborhood of vertex u, denoted Γ(u), be the
set of all vertices that are adjacent to u in G. The next two
definitions are standard, and apply not to uncertain graphs,
but to deterministic graphs.

Definition 1. A set of vertices C ⊆ V is a clique in a graph
G = (V,E), if every pair of vertices in C is connected by
an edge in E.

Definition 2. A set of vertices M ⊆ V is a maximal clique
in a graph G = (V,E), if (1) M is a clique in G and
(2) There is no vertex v ∈ V \M such that M ∪ {v} is a
clique in G.

Definition 3. In an uncertain graph G, for a set of vertices
C ⊆ V , the clique probability of C , denoted by clq(C,G),
is defined as the probability that in a graph sampled from
G, C is a clique. For parameter 0 ≤ α ≤ 1, C is called an
α-clique if clq(C,G) ≥ α.

For any set of vertices C ⊆ V , let EC denote the set of
edges {e = {u, v}|e ∈ E, u, v ∈ C and u 6= v}, i.e. the
set of edges connecting vertices in C .

Observation 1. For any set of vertices C ⊆ V in
G = (V,E, p), such that C is a clique in G = (V,E),
clq(C,G) =

∏
e∈EC

p(e).

Proof. Let G be a graph sampled from G. The set C will be
a clique in G iff every edge in EC is present in G. Since the
events of selecting different edges are independent of each
other, the observation follows.

Definition 4. Given an uncertain graph G = (V,E, p), and
a parameter 0 ≤ α ≤ 1, a set M ⊆ V is defined as an α-
maximal clique if (1) M is an α-clique in G, and (2) There
is no vertex v ∈ (V \M) such that M ∪{v} is an α-clique
in G.

Definition 5. The Maximal Clique Enumeration problem
in an Uncertain Graph G is to enumerate all vertex sets
M ⊆ V such that M is an α-maximal clique in G.

The following two observations follow directly from
Observation 1.

Observation 2. For any two vertex sets A,B in G, if B ⊂
A then, clq(B,G) ≥ clq(A,G).

Observation 3. Let C be an α-clique in G. Then for all
e ∈ EC we have p(e) ≥ α.

3 NUMBER OF MAXIMAL CLIQUES

The maximum number of maximal cliques in a deterministic
graph on n vertices is known exactly due to a result by
Moon and Moser [27]. If n mod 3 = 0, this number
is 3

n
3 . If n mod 3 = 1, then it is 4 · 3

n−4
3 , and if n

mod 3 = 2, then it is 2 · 3n−2
3 . The graphs that have the

maximum number of maximal cliques are known as Moon-
Moser graphs.

For uncertain cliques, no such bound was known so
far. In this section, we establish a bound on the maximum
number of α-maximal cliques in an uncertain graph. For
0 < α < 1, let f(n, α) be the maximum number of
α-maximal cliques in any uncertain graph with n nodes,
without any assumption about the assignments of edge
probabilities. The following theorem is the main result of
this section.

Theorem 1. Let n ≥ 2, and 0 < α < 1. Then: f(n, α) =( n
bn/2c

)
Proof. We can easily verify that the theorem holds for n =
2. for n ≥ 3, let g(n) =

( n
bn/2c

)
. We show f(n, α) is at
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least g(n) in Lemma 1, and then show that f(n, α) is no
more than g(n) in Lemma 2.

Lemma 1. For any n ≥ 3, and any α, 0 < α < 1,
there exists an uncertain graph G = (V,E, p) with n nodes
which has g(n) α-maximal cliques.

Proof. First, we assume that n is even. Consider G =
(V,E, p), where E = V × V . Let κ =

(n/2
2

)
. For each

e ∈ E, let p(e) = q where qκ = α. We have 0 < q < 1
since 0 < α < 1. Let S be an arbitrary subset of V such
that |S| = n/2. We can verify that S is an α-maximal
clique since (1) the probability that S is a clique is qκ = α
and (2) for any set S′ ) S, S′ ⊆ V , the probability that S′

is a clique is at most qqκ = qα < α. We can also observe
that for any subset S ⊆ V , S cannot be an α-maximal
clique if |S| < n/2 or |S| > n/2. Thus we conclude that a
subset S ⊆ V is an α-maximal clique iff |S| = n/2 which
implies that the total number of α-maximal cliques in G is( n
n/2

)
. A similar proof applies when n is odd.

Note that our construction in the Lemma above employs
the condition that n ≥ 3 and 0 < α < 1. When α = 1,
the upper bound is from the result of Moon and Moser for
deterministic graphs, and in this case f(n, α) = 3

n
3 and

is smaller than g(n). Next we present a useful definition
required for proving the next Lemma.

Definition 6. A collection of sets C is said to be non-
redundant if for any pair S1, S2 ∈ C, S1 6= S2, we have
S1 * S2 and S2 * S1.

Lemma 2. g(n) is an upper bound on f(n, α).

Proof. Let Cα(G) be the collection of all α-maximal cliques
in G. Note that by the definition of α-maximal cliques, any
α-maximal clique S in G can not be a proper subset of any
other α-maximal clique in G. Thus from Definition 6, for
any uncertain graph G, Cα(G) is a non-redundant collection.
Hence, it is clear that the largest number of α-maximal
cliques in G should be upper bounded by the size of a largest
non-redundant collection of subsets of V .

Let C be the collection of all subsets of V . Based on
C, we construct such an undirected graph Ĝ = (C, Ê)
where for any two nodes S1 ∈ C, S2 ∈ C, there is an
edge connecting S1 and S2 iff S1 ⊆ S2 or S2 ⊆ S1. It can
be verified that a sub-collection C′ ⊆ C is a non-redundant
iff C′ is an independent set in Ĝ. In Lemma 3, we show that
g(n) is the size of a largest independent set of Ĝ, which
implies that g(n) is an upper bound for the number of α-
maximal cliques in G.

Let C∗ be a largest independent set in Ĝ. Also, let
Ck ⊆ C, 0 ≤ k ≤ n be the collection of subsets of V
with the size of k. Observe that for each 0 ≤ k ≤ n, Ck
is an independent set of Ĝ. Also let L(n) and U(n) be
respectively the minimum and maximum size of sets in C∗.

We can show that L(n) and U(n) can be bounded as shown
in Lemma 4 and Lemma 5 respectively.

Lemma 3. For any n ≥ 3, |C∗| = g(n).

Proof. We first consider the case when n is even. By Lem-
mas 4 and 5, we know n/2 ≤ L(n) ≤ U(n) ≤ n/2. Thus
we have L(n) = U(n) = n/2 which implies C∗ = C∗n/2.
Recall that Ck ⊆ C, 0 ≤ k ≤ n is the collection of subsets
of V with the size of k.

We have (1) C∗ = C∗n/2 ⊆ Cn/2 and (2) |C∗| ≥ |Cn/2|
since C∗ is a largest independent set of Ĝ. Thus we conclude
C∗ = Cn/2 which has the size of

( n
(n/2)

)
= g(n).

We next consider the case when n is odd. From Lem-
mas 4 and 5, we know (n − 1)/2 ≤ L(n) ≤ U(n) ≤
(n + 1)/2. Thus we have C∗ = C∗(n−1)/2

⋃
C∗(n+1)/2.

For notation convenience, we set n1 = (n − 1)/2, n2 =
(n+ 1)/2. Let Ĝ(Cn1

, Cn2
) be the subgraph of Ĝ induced

by Cn1
∪ Cn2

. We can view Ĝ(Cn1
, Cn2

) as a bipartite
graph with two disjoint vertex sets Cn1

and Cn2
respectively.

Observe that C∗n1
⊆ Cn1 and C∗n2

⊆ Cn2 . Let Ê(C∗n1
) be the

set of edges induced by C∗n1
in Ĝ(Cn1 , Cn2). Since C∗ is an

independent set of Ĝ, none of the edges in Ê(C∗n1
) will have

an end in a node of C∗n2
, i.e, all the edges of Ê(C∗n1

) should
have an end falling in Cn2

\ C∗n2
. Note that in Ĝ(Cn1

, Cn2
),

all nodes have a degree of n2. Thus we have:

|Ê(C∗n1
)| = |C∗n1

|∗n2 ≤ |Cn2
\C∗n2
|∗n2 = (|Cn2

|−|C∗n2
|)∗n2

from which we obtain |C∗| = |C∗n1
| + |C∗n2

| ≤ |Cn2 | =( n
n2

)
. Note that Cn2

itself is an independent set of Ĝ with
size

( n
n2

)
. Thus we conclude that |C∗| =

( n
n2

)
= g(n).

Lemma 4. L(n) ≥ bn/2c

Proof. Let us assume n is an even number. We prove by
contradiction as follows. Suppose L(n) = ` ≤ n/2−1. Let
C∗k ⊆ C∗, L(n) ≤ k ≤ U(n) be the collection of all sets in
C∗ which has the size of k, i.e, C∗k = {S ∈ C∗||S| = k}.
In the following we construct a new collection Cnew ⊆ C
which proves to be an independent set in Ĝ with the size
being strictly larger than C∗. For each S ∈ C∗` , we add to C∗
all subsets of V which has the form as S ∪ {i} where i ∈
V \ S and remove S from C∗ meanwhile. Let Cnew be the
collection obtained after we process the same route for all
S ∈ C∗` . Mathematically, we have: Cnew = C1

⋃
C2 where

C1 =
⋃
S∈C∗`

⋃
i∈V \S{S ∪ {i}}, C2 = C∗ \ C∗` . First we

show Cnew is an independent set of Ĝ. Arbitrarily choose
two distinct sets, say S1 ∈ Cnew, S2 ∈ Cnew, S1 6= S2. We
check all the possible cases one by one:

• S1 ∈ C1, S2 ∈ C1. We observe that |S1| = |S2| =
`+1 and S1 6= S2. Thus no inclusion relation could
exist between S1 and S2.
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• S1 ∈ C2, S2 ∈ C2. In this case no inclusion
relation can exist between S1 and S2 since C2 is
an independent set of Ĝ.

• S1 ∈ C1, S2 ∈ C2. Since C∗` is the collection of
sets in C∗ which has the smallest size `, we get
that |S2| ≥ ` + 1 = |S1|. Therefore there is only
one possible inclusion relation existing here, that is
S1 ⊂ S2. Suppose S1 = S′1 ∪ {i1} ⊂ S2 for
some S′1 ∈ C∗` . Thus we get that S′1 ⊂ S2 which
implies C∗ is not an independent set of Ĝ. Hence
we conclude that no inclusion relation could exist
between S1 and S2.

Summarizing the analysis above, we get that no inclu-
sion relation could exist between S1 and S2 which yields
Cnew is an independent set of Ĝ.

Now we prove that |Cnew| > |C∗|. Observe that C1
and C2 are disjoint from each other; otherwise C∗ is not an
independent set. So we have |Cnew| = |C1|+|C2|. Note that
|C∗| = |C∗` |+ |C2| since C∗ is the union of the two disjoint
parts C∗` and C2. Therefore |Cnew| > |C∗| is equivalent to
|C1| > |C∗` |. Let Ĝ(C∗` , C1) be the induced subgraph graph
of Ĝ by C∗`

⋃
C1. Note that Ĝ(C∗` , C1) can be viewed as

a bipartite graph where the two disjoint vertex sets are C∗`
and C1 respectively. In Ĝ(C∗` , C1) we observe that (1) for
each node S1 ∈ C∗` , its degree d(S1) = n− `; (2) for each
node S2 ∈ C1, its degree d(S2) ≤ ` + 1. Thus we get
that |Ẽ| = |C∗` |(n − `) ≤ |C1|(` + 1). According to our
assumption we have ` ≤ n/2− 1. Thus we have
|C∗` |/|C1| ≤ (` + 1)/(n − `) ≤ (n/2)/(n/2 + 1) < 1,
yielding |C∗` | < |C1| which is equivalent to |C∗| < |Cnew|.

So far we have successfully constructed a new collection
Cnew ⊆ C such that (1) it is an independent set of Ĝ and
(2) |Cnew| > |C∗|. That contradicts with the fact that C∗ is
a largest independent set of Ĝ. Thus our assumption ` ≤
n/2− 1 does not hold, which yields ` ≥ n/2. For the case
when n is odd, we can process essentially the same analysis
as above and get ` ≥ (n− 1)/2.

Lemma 5. U(n) ≤ dn/2e

Proof. Let us assume n is an even number. Based on C∗, we
construct a dual collection C∗dual as follows: Initialize C∗dual
as an empty collection. For each S ∈ C∗, we add V \S into
C∗dual. Mathematically, we have: C∗dual =

⋃
S∈C∗{V \ S}.

First we show C∗dual is an independent set of Ĝ. Arbitrarily
choose two distinct sets, say V \ S1 ∈ C∗dual, V \ S2 ∈
C∗dual, where S1 ∈ C∗, S2 ∈ C∗, S1 6= S2. Note that

V \S1 ⊂ V \S2 ⇔ S1 ⊃ S2, V \S2 ⊂ V \S1 ⇔ S2 ⊃ S1

Thus we have that no inclusion relation could exist
between V \ S1 and V \ S2 since no inclusion relation
exists between S1 and S2 resulting from the fact that C∗ is
an independent set of Ĝ. So we get C∗dual is an independent
set as well.

We can verify that |C∗dual| = |C∗|. Therefore we can
conclude C∗dual is a largest independent set of Ĝ. By
Lemma 4, we get to know the minimum size of sets in C∗dual
should be at least n/2, which yields the maximum size of
of sets in C∗ should be at most n/2. For the case when n is
odd, we can analyze essentially the same as above.

4 ENUMERATION ALGORITHM

In this section, we present MULE (Maximal Uncertain
cLique Enumeration), an algorithm for enumerating all α-
maximal cliques in an uncertain graph G, followed by a
proof of correctness and an analysis of the runtime. We
assume that G has no edges e such that p(e) < α. If there
are any such edges, they can be pruned away without losing
any α-maximal cliques, using Observation 3. Let the vertex
identifiers in G be 1, 2, . . . , n. For clique C , let max(C)
denote the largest vertex in C . For ease of notation, let
max(∅) = 0, and let clq(∅,G) = 1.

Intuition. We first describe a basic approach to enu-
meration using depth-first-search (DFS) with backtracking.
The algorithm starts with a set of vertices C (initialized to
an empty set) that is an α-clique and incrementally adds
vertices to C , while retaining the property of C being
an α-clique, until we can add no more vertices to C . At
this point, we have an α-maximal clique. Upon finding
a clique that is α-maximal, the algorithm backtracks to
explore other possible vertices that can be used to extend
C , until all possible search paths have been explored. To
avoid exploring the same set C more than once, we add
vertices in increasing order of the vertex id. For instance, if
C was currently the vertex set {1, 3, 4}, we do not consider
adding vertex 2 to C , since the resulting clique {1, 2, 3, 4}
will also be reached by the search path by adding vertices
1, 2, 3, 4 in that order.

MULE improves over the above basic DFS approach in
the following ways. First, given a current α-clique C , the
set of vertices that can be added to extend C includes only
those vertices that are already connected to every vertex
within C . Instead of considering every vertex that is greater
than max(C), it is more efficient to track these vertices as
the recursive algorithm progresses – this will save the effort
of needing to check if a new vertex v can actually be used
to extend C . This leads us to incrementally track vertices
that can still be used to extend C .

Second, note that not all vertices that extend C into
a clique preserve the property of C being an α-clique. In
particular, adding a new vertex v to C decreases the clique
probability of C by a factor equal to the product of the
edge probabilities between v and every vertex in C . So, in
considering vertex v for addition to C , we need to compute
the factor by which the clique probability will fall. This
computation can itself take Θ(n) time since the size of C
can be Θ(n), and there can be Θ(n) edges to consider in
adding v. A key insight is to reduce this time to O(1) by
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incrementally maintaining this factor for each vertex v still
under consideration. The recursive subproblem contains, in
addition to current clique C , a set I consisting of pairs
(u, r) such that u > max(C), u can extend C into an α-
clique, and adding u will multiply the clique probability of
C by a factor of r. This set I is incrementally maintained
and supplied to further recursive calls.

Finally, there is the cost of checking maximality. Sup-
pose that at a juncture in the algorithm we found that I was
empty, i.e. there are no more vertices greater than max(C)
that can extend C into an α-clique. This does not yet mean
that C is an α-maximal clique, since it is possible there
are vertices less than max(C), but not in C , which can
extend C to an α-maximal clique (note that such an α-
maximal clique will be found through a different search
path). This means that we have to run another check to see
if C is an α-maximal clique. Note that even checking if a
set of vertices C is an α-maximal clique can be a Θ(n2)
operation, since there can be as many as Θ(n) vertices to be
potentially added to C , and Θ(n2) edge interactions to be
considered. We reduce the time for searching such vertices
by maintaining the set X of vertices that can extend C , but
will be explored in a different search path. By incrementally
maintaining probabilities with vertices in I and X , we can
reduce the time for checking maximality of C to Θ(n).

MULE incorporates the above ideas and is described in
Algorithm 1.

Algorithm 1: MULE(G, α)
Input: G is the input uncertain graph,

α, 0 < α < 1 is the user provided probability
threshold

1 Î ← ∅
2 forall the u ∈ V do
3 Î ← Î ∪ {(u, 1)}
4 Enum–Uncertain–MC(∅, 1 ,Î , ∅)

4.1 Proof of Correctness
In this section we prove the correctness of MULE.

Theorem 2. MULE (Algorithm 1) enumerates all α-
maximal cliques from an input uncertain graph G.

Proof. To prove the theorem we need to show the following.
First, if C is a clique emitted by Algorithm 1, then C must
be an α-maximal clique. Next, if C is an α-maximal clique,
then it will be emitted by Algorithm 1. We prove them in
Lemmas 8 and 9 respectively.

Before proving Lemmas 8 and 9, we prove some prop-
erties of Algorithm 2.

Lemma 6. When Algorithm 2 is called withC ′ in line 10, I ′

is a set of all tuples (u′r′), where u′ ∈ V and 0 < r′ ≤ 1,
such that u′ > max(C ′), and clq(C ′∪{u′},G) = q′ ·r′ ≥
α, i.e. C ′ ∪ {u′} is an α-clique in G.

Algorithm 2: Enum–Uncertain–MC(C, q, I,X)
Input: We assume G and α are available as

immutable global variables
C is the current Uncertain Clique being processed
q = clq(C,G), maintained incrementally
I is a set of all tuples (u, r), such that u > max(C),
and C ∪ {u} is an α-clique in G
X is a set of all tuples (v, s), such that v 6∈ C ,
v < max(C), and C ∪ {v} is an α-clique in G

1 if I = ∅ and X = ∅ then
2 Output C as α-maximal clique
3 return

4 forall the (u, r) ∈ I considered in lexicographical
ordering over u do

5 C ′ ← C ∪ {u} // Lemma 6
6 m = max(C ′) = u
7 q′ ← q · r // clq(C ∪ {v},G)
8 I ′ ← GenerateI(C ′, q′, I)
9 X ′ ← GenerateX(C ′, q′, X)

10 Enum–Uncertain–MC(C ′, q′, I ′, X ′)
11 X ← X ∪ {(u, r)}

Algorithm 3: GenerateI(C ′, q′, I)
Input: We assume G and α are available as

immutable global variables
1 m← max(C ′), I ′ ← ∅, S ← ∅
2 forall the (u, r) ∈ I do
3 S ← S ∪ {u}
4 S ← S ∩ {Γ(m)}
5 forall the (u, r) ∈ I do
6 if u > m and u ∈ S then
7 clq(C ′ ∪ {u},G)← q′ · r · p({u,m})
8 if (clq(C ′ ∪ {u},G)) ≥ α then
9 u′ ← u

10 r′ ← r · p({u,m})
11 I ′ ← I ′ ∪ {(u′, r′)}

12 return I’

Proof. Let u′ ∈ V be a vertex such that (1) u′ > max(C ′),
and (2) C ′∪{u′} is an α-clique in G. We need to show that
(u′, r′) ∈ I ′ such that clq(C ′ ∪ {u′},G) = q′ · r′.

LetC ′ be a clique being called by Enum–Uncertain–MC
with I ′. Note that each call of the method adds one vertex
u ∈ I to the current clique C such u > max(C). Since the
vertices are added in the lexicographical ordering, there is an
unique sequence of calls to the method Enum–Uncertain–
MC such that we reach a point in execution of Algorithm 2
where Enum–Uncertain–MC is called with C ′. We call this
sequence of calls as Call-0, Call-1, . . ., Call-|C ′|. Also,
let Ci be the clique used by method Enum–Uncertain–MC
during Call-i.
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Algorithm 4: GenerateX(C ′, q′, X)
Input: We assume G and α are available as

immutable global variables
1 m← max(C ′), X ′ ← ∅, S ← ∅
2 forall the (v, s) ∈ I do
3 S ← S ∪ {v}
4 S ← S ∩ {Γ(m)}
5 forall the (v, s) ∈ X do
6 if v ∈ S then
7 clq(C ′ ∪ {v},G)← q′ · s · p({v,m})
8 if (clq(C ′ ∪ {v},G) ≥ α then
9 v′ ← v

10 s′ ← s · p({v,m})
11 X ′ ← X ′ ∪ {(v′, s′)}

12 return X’

We prove by induction. First consider the base case. For
that consider the first call made to Algorithm 2, i.e. Call-
0. We know that C is initialized as ∅. During the first call
made, all vertices in V satisfy conditions (1) and (2). This
is because, first max(∅) = 0. Second any single vertex can
be considered as a clique with probability 1. Î is initialized
such that all r in Î are 1 ≥ α. Thus for all u such that
(u, r) ∈ Î , u > max(C). This proves the base case.

For the inductive step, consider a recursive call to the
method Call-iwhich calls Call-(i+1). For every case expect
initialization, I ′ is generated from I by line 8 of Algorithm 2
which in turn calls Algorithm 3. In Algorithm 3, only
vertices in I that are greater thanC ′ are added to I ′. Thus all
vertices in I that satisfy (1) are added to I ′. Next every ver-
tex in I is connected to C . We need to show that all vertices
in I ′ are connected to C ′. In line 4 of Algorithm 3, we prune
out any vertex in I that is not connected to m = max(C ′).
Assume that u′ extends C such that clq(C ∪ {u′},G) = r.
Now let c = {C ′ \C }. Note that c is a single vertex. Also,
assume u′ > c. From line 4, we know that q′ · r′ ≥ α
Also from line 6 of Algorithm 3, r′ = r · p({c, u′}). Now
clq(C ′ ∪ {u′},G) = q′ · r · p({c, u′}) = q′ · r′, Now in
line 8 of Algorithm 3 we add u′ to I ′ only if r′ ≥ α thus
proving the inductive step.

The following observation follows from Lemma 6.

Observation 4. The input C to Algorithm 2 is an α-clique.

Lemma 7. When Algorithm 2 is called with C ′ in line 10,
X ′ is a set of all tuples (v′, s′), where v′ ∈ V and 0 <
s′ ≤ 1, such that, ∀(v′, s′) ∈ X ′, we have v′ 6∈ C ′, v′ <
max(C ′), and (clq(C ′ ∪ {v′},G) = q′ · s′) ≥ α, i.e.
C ′ ∪ {v′} is an α-clique in G.

Proof. Let m = max(C ′) and C = C ′ \ {m}. Since Al-
gorithm 2 was called with C ′, it must have been called with
C . This is because the working clique is always extended by
adding vertices from I , and from Lemma 6, I only contains

vertices that are greater than the maximum vertex in C . Let
X be the corresponding set of tuples used when the call was
made to Enum–Uncertain–MC with C . Let u > max(C)
be a vertex such that clq(C ′ ∪ {u},G) ≥ α and u < m.
Note that u 6∈ C ′, u < max(C ′), and C ′ ∪ {u} is an
α-clique in G. This means u satisfies all conditions for
u ∈ X ′. We need to show that when Enum–Uncertain–
MC is called with C ′, the generated X ′ which is passed in
Enum–Uncertain–MC contains u.

Firstly, note that since C ′ ∪ {u} is α-clique in G, we
have clq(C ∪ {u},G) ≥ α (from Observation 2). Since
u > max(C) and clq(C ∪ {u},G) ≥ α, from Lemma 6,
u will be used in line 4 to call Enum–Uncertain–MC using
C ∪ {u}. Once this call is returned, u is added to X in
line 11. Note that since the loop at line 4 add vertices in
lexicographical order, m will be added to C after u. Thus u
will be in X , when m is used to extend C . Next we show
that if u ∈ X , after execution of line 9, u ∈ X ′. We prove
this as follows. Note that Algorithm 4 is used to generate
X ′ from X . Note that X ′ is generated by Algorithm 4 by
selectively adding vertices from X . A vertex is added to X ′

from X , only if C ′ ∪ {u} is α-clique in G. From our initial
assumptions, we know that u satisfies this condition and is
hence added to X ′ and passed on to Enum–Uncertain–MC
when it is called with C ′.

Now let us consider v, such that v does not satisfy all the
conditions for v ∈ X ′. We need to show that v 6∈ X ′. There
are two cases. First, when v 6∈ X . This case is trivial as X ′

is constructed from X and hence if v 6∈ X , v 6∈ X ′. For
the second case, when v ∈ X , we need to show that v will
not be added to X ′ in line 9 of Algorithm 2. Note that since
v ∈ X , we know v 6∈ C ′ and v < max(C ′). Thus, it must
be that C ∪ {m, v} is not an α-clique in G. Algorithm 4
will add v to X ′ only if C ∪ {m, v} is α-clique in G. But
from our previous discussion, we know that this condition
doesn’t hold. Hence, v will not be added to X ′. Thus only
vertices that satisfy all three conditions are in X ′.

Lemma 8. Let C be a clique emitted by Algorithm 2. Then
C is an α-maximal clique.

Proof. Algorithm 2 emits C in Line 2. From Observation 4,
we know that C is an α-clique. We need to show that C is
α-maximal. We use proof by contradiction. Suppose C is
non-maximal. This means that there exists a vertex u ∈ V ,
such that C∪{u} is an α-clique. We know that I = ∅ when
C is emitted. From Lemma 6, we know that there exists no
vertex u ∈ V such that u > max(C) that can extend C .
Again, we know that X = ∅ when C is emitted. Thus from
Lemma 7, we know that there exists no vertex v ∈ V such
that v < max(C) that can extend C . This is a contradiction
and hence C is an α-maximal clique.

Lemma 9. Let C be an α-maximal clique in G. Then C is
emitted by Algorithm 2.
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Proof. We first show that a call to method Enum–
Uncertain–MC with α-clique C enumerates all α-maximal
cliques C ′ in G, such that for all c ∈ {C ′ \ C},
c > max(C).

Without loss of generality, consider a α-maximal clique
C ′ in G such that ∀c ∈ {C ′ \ C}, c > max(C). Note that
C ′ will be emitted as an α-maximal clique by the method
Enum–Uncertain–MC when called with C , if the following
holds: (1) A call to method Enum–Uncertain–MC is made
with C ′, (2) When this call is made, I ′ = ∅, and X ′ = ∅.
Since C ′ is α-maximal clique in G, the second point follows
from Lemmas 6 and 7. Thus we need to show that a call to
Enum–Uncertain–MC is made with C ′.

We prove this by induction. Let Ĉ = {C ′ \ C}. Let ci
represent the ith element in Ĉ in lexicographical order. Also
let Ci = C ∪ {c1, c2, . . . , ci}. For the base case, we show
that if a call to Enum–Uncertain–MC is made with C , a call
will be made with C1 = C ∪ {c1}. This is because, line 4
of the method loops over every vertex u ∈ I thus implying
u > max(C) and clq(C ∪ {u},G) ≥ α. Since C ′ is an
α-maximal clique, c1 will satisfy both these conditions and
hence a call to Enum–Uncertain–MC is made withC∪{c1}.
Now for the inductive step we show that if a call is made
with clique Ci, then this call will in turn call the method
with clique Ci+1. Again, ci+1 is greater than max(Ci)
and clq(Ci ∪ {ci+1},G) ≥ α. Thus ci+1 ∈ I when the
call is made to Enum–Uncertain–MC with Ci. Hence using
the previous argument, in line 4, ci+1 will be used as a
vertex in the loop which would in turn make a call to Enum–
Uncertain–MC with Ci+1.

Now without any loss of generality, consider an α-
maximal clique in G. We know that C ⊃ ∅. Thus the proof
follows.

4.2 Runtime Complexity

Theorem 3. The runtime of MULE (Algorithm 1) on an
input graph of n vertices is O (n · 2n).

Proof. MULE initializes variables and calls to Algorithm 2,
hence we analyze the runtime of Algorithm 2. An execution
of the recursive Algorithm 2 can be viewed as a search tree
as follows. Each call to Enum–Uncertain–MC is a node of
this search tree. The first call to the method is the root node.
A node in this search tree is either an internal node that
makes one or more recursive calls, or a leaf node that does
not make further recursive calls. To analyze the runtime of
Algorithm 2, we consider the time spent at internal nodes as
well as leaf nodes.

The runtime at each leaf node is O(1). For a leaf node,
the parameter I = ∅, and there are no further recursive
calls. This implies that either C is α-maximal (X = ∅) and
is emitted in line 2 or it is non-maximal (X 6= ∅) but cannot
be extended by the loop in line 4 as I = ∅. Checking the
sizes of I and X takes constant time.

We next consider the time taken at each internal node.
Instead of adding up the times at different internal nodes,
we equivalently add up the cost of the different edges in
the search tree. At each internal node, the cost of making
a recursive call can be analyzed as follows. Line 5 takes
O (n) time as we add all vertices in C to C ′ and also u.
Line 7 takes constant time. Lines 8 and 9 take O (n) time
(Lemmas 10 and 11 respectively). Note that lines 5 to 9 can
get executed only once in between the two calls. Thus total
runtime for each edge of the search tree is O (n).

Note that the total number of calls made to the method
method Enum–Uncertain–MC is no more than the possible
number of unique subsets of V , which is O (2n). We see
that for internal nodes, time complexity isO (n) and for leaf
nodes it isO (1). Hence the time complexity of Algorithm 2
is O (n · 2n).

Thus now we need to prove that lines 8 and 9 take
O (n) time. This implies that time complexity of Algo-
rithms 3 and 4 is O (n). We prove the same in Lem-
mas 10 and 11 respectively.

Lemma 10. The runtime of Algorithm 3 is O (n).

Proof. First note that lines 1-6 takes O (n) time. This is
because |I| = O (n), and hence the loop at line 4 of Algo-
rithm 3 can take O (n) time. Further the set intersection at
line 6 also takes O (n) time. We need to show that the for
loop in line 7 isO (n), that is each iteration of the loop takes
O (1) time. Assume that it takes constant time to find out
the probability of an edge. This is a valid assumption, as the
edge probabilities can be stored as a HashMap and hence for
an edge e, in constant time we can find out p(e). With this
assumption, it is easy to show that lines 8-13 takes constant
time. This is because, they are either constant number of
multiplications, or adding one element to a set. Thus total
time complexity is O (n).

Lemma 11. The runtime of Algorithm 4 is O (n).

We omit the proof of the above lemma since it is similar
to the proof of Lemma 10.

Observation 5. The worst-case runtime of any algorithm
that can output all maximal cliques of an uncertain graph
on n vertices is Ω (

√
n · 2n).

Proof. From Theorem 1, we know that the number of
maximal uncertain cliques can be as much as

( n
bn/2c

)
=

Θ
(

2n√
n

)
(using Stirling’s Approximation). Since the size

of each uncertain clique can be Θ (n), the total output size
can be Ω (

√
n · 2n), which is a lower bound on the runtime

of any algorithm.

Lemma 12. The worst-case runtime of MULE on an n
vertex graph is within a O(

√
n) factor of the runtime of an

optimal algorithm for Maximal Clique Enumeration on an
uncertain graph.
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Proof. The proof follows from Theorem 3 and Observa-
tion 5.

4.3 Enumerating Only Large Maximal Cliques
For a typical input graph, many maximal cliques are small,
and may not be interesting to the user. Hence it is helpful
to have an algorithm that can enumerate only large maxi-
mal cliques efficiently, rather than enumerate all maximal
cliques. We now describe an algorithm that enumerates
every α-maximal clique with more than t vertices, where
t is an user provided parameter.

As a first step, we prune the input uncertain graph
G = (V,E, p) by employing techniques described by
Modani and Dey [42]. We apply the “Shared Neighborhood
Filtering” where edges are recursively checked and removed
as follows. First drop all edges {u, v} ∈ E, such that
|Γ(u) ∩ Γ(v)| < (t − 2). Next drop every vertex v ∈ V ,
that doesn’t satisfy the following condition. For vertex
v ∈ V , there must exist at least (t − 1) vertices in Γ(v),
such that for u ∈ Γ(v), |Γ(u) ∩ Γ(v)| < (t − 2). Let G′
denote the graph resulting from G after the pruning step.

Algorithm 5 runs on the pruned uncertain graph G′
to enumerate only large maximal cliques. The recursive
method in Algorithm 6 differs from Algorithm 2 as follows.
Before each recursive call to method Enum–Uncertain–MC-
Large (Algorithm 6), the algorithm checks if the sum of the
sizes of the current working clique C ′ and the candidate
vertex set I ′ are greater than the size threshold t. If not,
the recursive method is not called. This optimization leads
to a substantial pruning of the search space and hence a
reduction in runtime.

Algorithm 5: LARGE–MULE(G, α,t)
Input: G′ is the input uncertain graph post pruning

α, 0 < α < 1 is the user provided probability
threshold

t, t ≥ 2 is the user provided size threshold
1 Î ← ∅
2 forall the u ∈ V do
3 Î ← Î ∪ {(u, 1)}
4 Enum–Uncertain–MC–Large(∅, 1 ,Î , ∅,t)

Lemma 13. Given an input graph G, LARGE–MULE (Al-
gorithm 5) enumerates every α-maximal clique with more
than t vertices.

Proof. First we prove that no maximal clique of size less
than t is enumerated by Algorithm 6. Consider an α-
maximal clique C1 in G with less than t vertices. Also
let m1 = max(C1) and C ′1 = C1 \ {m1}. Note that if
C1 is emitted by Algorithm 6, then a call must be made to
Enum–Uncertain–MC–Large with C1. Since the Algorithm
adds vertices in lexicographical ordering, this implies that

Algorithm 6: Enum–Uncertain–MC–Large(C, q, I,X, t)

Input: We assume G and α are available as
immutable global variables

C is the current Uncertain Clique being processed
q = clq(C,G), maintained incrementally
I is a set of all tuples (u, r), such that u > max(C),
and C ∪ {u} is an α-clique in G
X is a set of all tuples (v, s), such that v 6∈ C ,
v < max(C), and C ∪ {v} is an α-clique in G
t is the user provided size threshold

1 if I = ∅ and X = ∅ then
2 Output C as α-maximal clique
3 return

4 forall the u, r ∈ I considered in lexicographical
ordering over u do

5 C ′ ← C ∪ {u} // Lemma 6
6 m = max(C ′) = u
7 q′ ← q · r // clq(C ∪ {v},G)
8 I ′ ← GenerateI(C ′, q′, I)
9 if |C ′|+ |I ′| < t then

10 continue

11 X ′ ← GenerateX(C ′, q′, X)
12 Enum–Uncertain–MC–Large(C ′, q′, I ′, X ′, t)
13 X ← X ∪ {(u, r)}

a call must be made to Enum–Uncertain–MC–Large with
C ′1 before the call is made with C1. In the worst case,
let us consider that the search tree reaches the execution
point where Enum–Uncertain–MC–Large is called with C ′1.
Consider the execution of the algorithm where m1 is added
to C = C ′1 to form C ′ = C1. Since C1 is an α-maximal
clique, I ′ will become NULL which implies |I ′| = 0. We
know that |C1| < t. Thus |C1 + I ′| will also be less than
t and the If condition (line 8) will succeed. This will result
in the execution of the continue statement. Thus Enum–
Uncertain–MC-Large will not be called with C1 implying
that C1 is not enumerated.

Next we show that any maximal clique of size at least
t is enumerated by Algorithm 6. Consider an α-maximal
clique C2 in G of size at least t. We note that the “If”
condition in line 8 is never satisfied in the search path
ending with C2 and hence a call is made to the method
with Enum-Uncertain-MC-Large with C2. This is easy to
see as whenever a call is made to Enum-Uncertain-MC-
Large with any C ⊆ C2, since C2 is large, we always have
|C|+ |I| ≥ t.

5 EXPERIMENTAL RESULTS

We report the results of an experimental evaluation of our
algorithm. We implemented the algorithm using Java and
ran all experiments on a system with a 3.19 GHz Intel(R)
Core(TM) i5 processor and 4 GB of RAM, with heap space
configured at 1.5GB.
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TABLE 1: Input Graphs

Input Graph Category Description # Vertices # Edges
Fruit-Fly Protein Protein Interaction network PPI for Fruit Fly from STRING Database 3751 3692
DBLP10 Social network Collaboration network from DBLP 684911 2284991

amazon–0302 Product co-purchasing network March 2003 Amazon co-purchase network 262111 1234877
p2p-Gnutella08 Internet peer-to-peer networks Gnutella network August 8 2002 6301 20777
p2p-Gnutella04 Internet peer-to-peer networks Gnutella network August 4 2003 10879 39994
p2p-Gnutella09 Internet peer-to-peer networks Gnutella network August 9 2003 8114 26013

ca-GrQc Collaboration networks Arxiv General Relativity 5242 28980
wiki-vote Social networks wikipedia who-votes-whom network 7118 103689
BA5000 Barabási−Albert random graphs Random graph with 5K vertices 5000 50032
BA6000 Barabási−Albert random graphs Random graph with 6K vertices 6000 60129
BA7000 Barabási−Albert random graphs Random graph with 7K vertices 7000 70204
BA8000 Barabási−Albert random graphs Random graph with 8K vertices 8000 80185
BA9000 Barabási−Albert random graphs Random graph with 9K vertices 9000 90418
BA10000 Barabási−Albert random graphs Random graph with 10K vertices 10000 99194
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Fig. 1: Comparison of Simple and Optimized Depth First Search approaches. The y–axis is in log–scale.
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Fig. 2: Runtime vs Probability threshold (α). The x–axis is in log–scale

Input Data: Details of the input graphs that we used are
shown in Table 1.

The first set of graphs consists of real world uncertain
graphs, also used in [32] and [36]. These include a protein-
protein interaction (PPI) network of a Fruit Fly obtained
by integrating data from the BioGRID 2 database with that

2. http://thebiogrid.org/

form the STRING 3 database, and the DBLP 4 dataset from
authors of [36], which is an uncertain network predicting
future co-authorship. The PPI network is an uncertain graph
where each vertex represents a protein, and two vertices are
connected by an edge with a probability representing the

3. http://string-db.org/
4. http://dblp.uni-trier.de/
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Fig. 3: No of α-maximal cliques vs Probability threshold (α). The x–axis is in log–scale

likelihood of interaction between the the two proteins. The
DBLP network represents co-authorship in academic arti-
cles. Each vertex in this network represents an author. Two
vertices are connected by an edge with a probability that
depends on the “strength” of their co-authorship, computed
as 1−e−c/10, where c is the number of papers co–authored.

The second set of graphs was obtained from the Stan-
ford Large Network Collection [48], and includes graphs
representing Internet p2p networks, collaboration networks,
and an online social network. The amazon0302 network
is a product co-purchasing network where each node is
a product and two nodes (products) are connected by an
edge if they are frequently co-purchased. The p2p-Gnutella
graphs represent peer to peer file sharing networks, where
each vertex represents a computer and an edge represents
an application level communication between computers.
The p2p-Gnutella04, p2p-Gnutella08 and p2p-Gnutella09
graphs represent communications occurring on 4th, 8th and
9th of August, 2002 respectively. The ca-GrQc graph repre-
sents a collaboration network among scientists working on
General Relativity and Quantum Cosmology. Each vertex
in the graph is a scientist and two vertices are connected
by an edge if the corresponding scientists have co-authored
a paper. Finally the wiki-vote graph represents voting that
occurs while selecting a new wikipedia administrator. Each
vertex is either a wikipedia admin or wikipedia user and an
edge represents a vote that an admin/user casts in favor of
a candidate. For each graph in the second set, an uncertain
graph was created by assigning edge probabilities uniformly
at random. Hence these can be considered as semi–synthetic
uncertain graphs.

The third set of input graphs was synthetically gener-
ated using the Barabási−Albert (BA) model for random
graphs [49]. Then the edges were assigned probabilities
uniformly at random from [0, 1].

Comparison with other approaches. We compare
our algorithm with another algorithm based on depth-first-
search, which we call DFS-NOIP (DFS with NO Incre-
mental Probability Computation). Similar to MULE, this
algorithm performs a depth first search to enumerate all α–
maximal cliques but unlike MULE, it does not compute the
probabilities incrementally. The DFS-NOIP algorithm is de-
scribed in supplementary materials, due to space constraints.

Figure 1 shows the runtime of MULE and of DFS–NOIP
on different input graphs. The results show that MULE is
much faster than DFS–NOIP. For instance, for the wiki–
vote graph with α = 0.9 DFS–NOIP took 64 seconds
while MULE took only 8 seconds. The relative performance
results hold true over a wide range of input graphs and
values of α, including synthetic and real-world graphs, and
small and large values of α. For α = 0.0001, MULE
took only 25 secs on ca-GrQc, while DFS–NOIP took over
4400 secs. On the wiki–vote input graph with probability
threshold 0.9, MULE took 8 seconds while DFS–NOIP took
64 seconds. For the same graph, with probability threshold
0.0001, MULE took 114 seconds, while DFS–NOIP took
more than 11 hours.

Dependence on α. We measured the runtime of enumer-
ation as well as the output size (the number of α-maximal
cliques that were output) as a function of α. The dependence
of the runtime on α is shown in Figure 2, and the number of
cliques as a function of α is shown in Figure 3. We note that
as α increases, the number of maximal cliques, and the time
of enumeration both drop sharply. The decrease in runtime
is because with a larger value of α, the size of the output
decreases and the algorithm is able to prune search paths
aggressively early in the enumeration.

We note here that the number of α-maximal cliques does
not necessarily decrease as α increases. Sometimes it is pos-
sible that the number of α-maximal cliques increases with
α. For instance, a large maximal clique whose probability is
above the threshold for a small value of α may not pass the
threshold for a higher value of α, and may split into many
smaller maximal cliques, thus leading to an increase in the
number of maximal cliques. However, such instances seem
to be rare and are not visible in the plots.

Dependence on Output Size Figure 4 shows the run-
time as a function of the number of α-maximal cliques
enumerated, for randomly generated graphs. It can be seen
that the runtime of the algorithm increases with the number
of maximal cliques in the output, and also that the runtime
scales well with the output size. This comparison was not
done for real world or semi–synthetic graphs as these graphs
have different structural properties, hence different sizes of
maximal cliques and thus there is no meaningful way to
interpret the results.
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Enumerating Large Maximal Cliques. Figures 5 and 6
show the runtime of LARGE–MULE (Algorithm 5) and
the output size respectively as a function of t, the mini-
mum threshold for the size of the α-maximal clique. As
t increases, both the runtime and output size decrease
substantially. For instance, MULE takes 76797 seconds to
enumerate all uncertain maximal cliques from the DBLP
dataset, for probability threshold 0.9. However, LARGE–
MULE takes only 32 seconds when t = 3. Similarly,
for input graph ca-GrQc and α = 0.0001, MULE takes
125 seconds, while LARGE–MULE takes 10 seconds when
t = 6 and 6 seconds when t = 7.

Dependence on Number of Uncertain Edges. Figure 7
shows the change in runtime as a function of the graph
uncertainty, for the ca–GrQc and DBLP10 networks. We
consider the same underlying network with difference in
the number of uncertain edges. We use the following three
cases: 1) when all edges are uncertain, 2) when two–thirds
of all the edges are uncertain, and 3) when one–third of all
the edges are uncertain.

We can see that as the number of uncertain edges in
the graph increases, the runtime decreases. Considering that
there can be many more uncertain maximal cliques than
just maximal cliques, Figure 7 shows that our algorithm
employs effective pruning techniques that help us to quickly
identify all maximal uncertain cliques. For example, for
the graph ca-GrQc and α = 0.5, MULE took 6 and 7
seconds for all uncertain and two–third uncertain edges
respectively. However, for one–third uncertain edges, it took
124 seconds. Again for the graph DBLP10 and α = 0.9,
MULE (with size threshold 4), could find all maximal
cliques in 6 seconds with all uncertain edges. But with
only two–third uncertain edges, the same graph took over
42 minutes with one–third uncertain edges, we could not
process the graph within 4 hours. Thus, the graph processing
time required by our method reduces as the uncertainty
of the graph increases. Note that there are two ways in
which uncertain cliques can be handled – first by using
deterministic MCE and then finding embedded uncertain
cliques, and second, by directly incorporating uncertainty
in pruning, as we do. From Figure 7 we can see that for
multiple values of α, as the number of uncertain edges
increase, runtime of MULE decreases. This implies that

when we directly model uncertainty and use our Algorithm,
we can find structures much faster than finding all maximal
cliques followed by pruning on basis of probability to find
maximal uncertain cliques.
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Scale-Free Graph Models. In order to see the per-
formance on different types of scale-free graph models,
in addition to the random graphs generated using the
Barabási−Albert (BA) model, which is a type of a scale free
(SF) model, we constructed random graphs using the two–
level scale free model [50], to compare against the graphs
generated using the BA model. For each BA input graph that
we used, we generated a SF graph with the same number of
vertices as the BA graph, and compared the runtime of our
algorithm and the output size. Due to lack of space, we
present only a subset of results in Figure 8. We observe
from the Figure that there is little difference in processing
runtime or output size, between the BA graphs and the two-
level SF graphs. Both BA as well as two-level SF graphs,
took approximately the same amount of time to be processed
and had very similar number of maximal uncertain cliques.
We observed the same behavior for different values of α
that we tried.

6 CONCLUSION

We present a systematic study of the enumeration of maxi-
mal cliques from an uncertain graph, starting from a precise
definition of the notion of an α-maximal clique, followed by
a proof showing that the maximum number of α-maximal
cliques in a graph on n vertices is exactly

( n
bn/2c

)
, for

0 < α < 1. We present a novel algorithm, MULE, for
enumerating the set of all α-maximal cliques from a graph,
and an analysis showing that the worst-case runtime of this
algorithm is O (n · 2n). We present an experimental evalu-
ation of MULE showing its performance, and an extension
for faster enumeration of large maximal cliques.

An interesting open problem is to design an algorithm
for enumerating maximal cliques from an uncertain graph
whose time complexity is worst-case optimal, O (

√
n · 2n).

Finally, there are various dense substructures that can be
found in a network. Some examples include bicliques,
quasi–cliques and k-cores. Finding these dense substruc-
tures in the context of uncertain graphs can be an important
future direction of work.

Acknowledgments: This work was partially funded by
an IBM Faculty Award and by grant 0831903 from the
National Science Foundation.
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