

Identifiers

- *Identifiers* are the words a programmer uses in a program
- An identifier can be made up of letters, digits, the underscore character (_), and the dollar sign
- · Identifiers cannot begin with a digit
- Java is case sensitive Total, total, and TOTAL are different identifiers
- By convention, programmers use different case styles for different types of identifiers, such as
 - title case for class names Lincoln
 - upper case for constants MAXIMUM

2004 Pearson Addison-Wesley, All rights reserved

Identifiers

- Sometimes we choose identifiers ourselves when writing a program (such as Lincoln)
- Sometimes we are using another programmer's code, so we use the identifiers that he or she chose (such as println)
- Often we use special identifiers called *reserved* words that already have a predefined meaning in the language
- · A reserved word cannot be used in any other way

04 Pearson Addison-Wesley, All rights reserved

Reserved Words

on Addison-Wesley, All rights

© 2004 Pr

· The Java reserved words:

-4	abstract	else	interface	switch
X	assert	enum	long	synchronized
	boolean	extends	native	this
	break	false	new	throw
	byte	final	null	throws
1.1	case	finally	package	transient
3/2	catch	float	private	true
Y	char	for	protected	try
N.	class	goto	public	void
1	const	if	return	volatile
ľ.	continue	implements	short	while
1	default	import	static	
1	do	instanceof	strictfp	
No.	double	int	super	
C.S.				
C				
-				

White Space

- Spaces, blank lines, and tabs are called *white space*
- White space is used to separate words and symbols in a program
- Extra white space is ignored
- A valid Java program can be formatted many ways
- Programs should be formatted to enhance readability, using consistent indentation
- See Lincoln2.java (page 34)
- See Lincoln3.java (page 35)

Comments about the class public class MyProgram { // comments about the method public static void main (String[] args) { System.out.println("Hello World"); } }

Analog vs. Digital

- There are two basic ways to store and manage data:
- Analog
 - continuous, in direct proportion to the data represented
 music on a record album a needle rides on ridges in the grooves that are directly proportional to the voltages sent to the speaker
- Digital
 - the information is broken down into pieces, and each piece is represented separately
 - music on a compact disc the disc stores numbers representing specific voltage levels sampled at specific times

Pearson Addison-Wesley. All rights reserve

Digital Information

- · Computers store all information digitally:
 - numbers
 - text
 - graphics and images
 video
 - video
 audio
 - program instructions
- In some way, all information is *digitized* broken down into pieces and represented as numbers

© 2004 Pearson Addison-Wesley. All rights reserved

Binary Numbers

- Once information is digitized, it is represented and stored in memory using the binary number system
- A single binary digit (0 or 1) is called a bit
- Devices that store and move information are cheaper and more reliable if they have to represent only two states
- A single bit can represent two possible states, like a light bulb that is either on (1) or off (0)
- · Permutations of bits are used to store values

2004 Pearson Addison-Wesley, All rinter meaning

4

Sig.	Bit Permutations							
	<u>1 bit</u>	2 bits	<u>3 bits</u>	<u>4 k</u>	oits			
X	0	00	000	0000	1000			
	1	01	001	0001	1001			
NA 1		10	010	0010	1010			
		11	011	0011	1011			
			100	0100	1100			
			101	0101	1101			
Contraction of the second			110	0110	1110			
			111	0111	1111			
Each additional bit doubles the number of possible per								
	© 2004 Pearson Addison-V	Vesley. All rights reserved						

S.	Bit Permutations					
NA C	 Each permutation can represent a particular item There are 2^N permutations of N bits Therefore, N bits are needed to represent 2^N unique items 					
	How many items can be represented by	eserved	1 bit ? 2 bits ? 3 bits ? 4 bits ? 5 bits ?	$2^{1} = 2$ items $2^{2} = 4$ items $2^{3} = 8$ items $2^{4} = 16$ items $2^{5} = 32$ items		

Program Development

- The mechanics of developing a program include several activities
 - writing the program in a specific programming language (such as Java)
 - translating the program into a form that the computer can execute
 - investigating and fixing various types of errors that can occur
- Software tools can be used to help with all parts of this process

© 2004 Pearson Addison-Wesley. All rights reserved

Programming Languages

- Each type of CPU executes only a particular machine language
- A program must be translated into machine language before it can be executed
- A compiler is a software tool which translates source code into a specific target language
- Often, that target language is the machine language for a particular CPU type
- · The Java approach is somewhat different

Java Translation

- The Java compiler translates Java source code into a special representation called *bytecode*
- Java bytecode is not the machine language for any traditional CPU
- Another software tool, called an *interpreter*, translates bytecode into machine language and executes it
- Therefore the Java compiler is not tied to any particular machine
- · Java is considered to be architecture-neutral

© 2004 Pearson Addison-Wesley. All rights reserved

Errors

- · A program can have three types of errors
- The compiler will find syntax errors and other basic problems (compile-time errors)
 - If compile-time errors exist, an executable version of the program is not created
- A problem can occur during program execution, such as trying to divide by zero, which causes a program to terminate abnormally (*run-time errors*)
- A program may run, but produce incorrect results, perhaps using an incorrect formula (*logical errors*)

© 2004 Pearson Addison-Wesley. All rights reserved

