
1

© 2004 Pearson Addison-Wesley. All rights reserved

September 1, 2006

Creating Objects &
String Class

ComS 207: Programming I (in Java)
Iowa State University, FALL 2006
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Quick review of last lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Assignment Revisited

• The right and left hand sides of an assignment
statement can contain the same variable

First, one is added to the
original value of count

Then the result is stored back into count
(overwriting the original value)

count = count + 1;

© 2004 Pearson Addison-Wesley. All rights reserved

Increment and Decrement

• The increment and decrement operators use only
one operand

• The increment operator (++) adds one to its
operand

• The decrement operator (--) subtracts one from
its operand

• The statement

count++;

is functionally equivalent to

count = count + 1;

© 2004 Pearson Addison-Wesley. All rights reserved

Increment and Decrement

• The increment and decrement operators can be
applied in postfix form:

count++

• or prefix form:

++count

• When used as part of a larger expression, the two
forms can have different effects

• Because of their subtleties, the increment and
decrement operators should be used with care

© 2004 Pearson Addison-Wesley. All rights reserved

Assignment Operators

• Often we perform an operation on a variable, and
then store the result back into that variable

• Java provides assignment operators to simplify
that process

• For example, the statement

num += count;

is equivalent to

num = num + count;

2

© 2004 Pearson Addison-Wesley. All rights reserved

Assignment Operators

• There are many assignment operators in Java,
including the following:

Operator

+=
-=
*=
/=
%=

Example

x += y
x -= y
x *= y
x /= y
x %= y

Equivalent To

x = x + y
x = x - y
x = x * y
x = x / y
x = x % y

© 2004 Pearson Addison-Wesley. All rights reserved

Widening Conversions

© 2004 Pearson Addison-Wesley. All rights reserved

Narrowing Conversions

© 2004 Pearson Addison-Wesley. All rights reserved

Conversion Techniques

• 1) Assignment conversion
� Value of one type is assigned to a variable of anot her

type during which the value is converted to the new type.

• 2) Promotion
� Occurs automatically when certain operators need to

modify their operands.

• 3) Casting (a.k.a. type casting)
� Specified explicitly by the programmer

© 2004 Pearson Addison-Wesley. All rights reserved

Assignment conversion

float money;
int dollars;

dollars=5;

money = dollars; // OK, money is now equal to 5.0

dollars= money; //Compile error

© 2004 Pearson Addison-Wesley. All rights reserved

(automatic) promotion

float sum, result;
int count;

sum= 12.0;
count=5;

result = sum/count; // count promoted to float
// before the division

3

© 2004 Pearson Addison-Wesley. All rights reserved

(automatic) promotion

// the number ‘5’ is first promoted to a string and then
// the two strings are concatenated

System.out.printlf(“Five is equal to ” + 5);

© 2004 Pearson Addison-Wesley. All rights reserved

Type Casting

float money;
int dollars;

dollars=5;

money = dollars; // OK, money is now equal to 5.0

dollars= (int) money; //Compile error OK

© 2004 Pearson Addison-Wesley. All rights reserved

Type Casting + Promotion

float result;
int total, count;

total= 12;
count=5;

result = (float) total / count; // result = 2.4
// 1. total is cast to float
// 2. count is promoted to float
// 3. the division is performed

© 2004 Pearson Addison-Wesley. All rights reserved

Type Casting + Promotion

float result;
int total, count;

total= 12;
count=5;

result = (float) (total / count); // result = 2.0
// 1. total and count a divided using integer divis ion
// 2. the intermediary result is cast to a float
// 3. this float value is assigned to result

© 2004 Pearson Addison-Wesley. All rights reserved

Scanner
Class

© 2004 Pearson Addison-Wesley. All rights reserved

Reading Input

• The following line creates a Scanner object that re ads from
the keyboard:

Scanner scan = new Scanner (System.in);

• The new operator creates the Scanner object

• Once created, the Scanner object can be used to invoke
various input methods, such as:

answer = scan.nextLine();

• In order to use the Scanner object you must put this line at
the top of your Java program

import java.util.Scanner;

4

Chapter 3

Using Classes and
Objects

Section 1.6

Sections 3.1 & 3.2

© 2004 Pearson Addison-Wesley. All rights reserved

Problem Solving

• The purpose of writing a program is to solve a
problem

• Solving a problem consists of multiple activities:

� Understand the problem

� Design a solution

� Consider alternatives and refine the solution

� Implement the solution

� Test the solution

• These activities are not purely linear – they
overlap and interact

© 2004 Pearson Addison-Wesley. All rights reserved

Problem Solving

• The key to designing a solution is breaking it down
into manageable pieces

• When writing software, we design separate pieces
that are responsible for certain parts of the
solution

• An object-oriented approach lends itself to this
kind of solution decomposition

• We will dissect our solutions into pieces called
objects and classes

© 2004 Pearson Addison-Wesley. All rights reserved

Object-Oriented Programming

• Java is an object-oriented programming language

• As the term implies, an object is a fundamental
entity in a Java program

• Objects can be used effectively to represent real-
world entities

• For instance, an object might represent a
particular employee in a company

• Each employee object handles the processing and
data management related to that employee

© 2004 Pearson Addison-Wesley. All rights reserved

Objects

• An object has:

� state - descriptive characteristics

� behaviors - what it can do (or what can be done to it)

• The state of a bank account includes its account
number and its current balance

• The behaviors associated with a bank account
include the ability to make deposits and
withdrawals

• Note that the behavior of an object might change
its state

5

© 2004 Pearson Addison-Wesley. All rights reserved

Classes

• An object is defined by a class

• A class is the blueprint of an object

• The class uses methods to define the behaviors of
the object

• The class that contains the main method of a Java
program represents the entire program

• A class represents a concept, and an object
represents the embodiment of that concept

• Multiple objects can be created from the same
class

© 2004 Pearson Addison-Wesley. All rights reserved

Objects and Classes

Bank
Account

A class
(the concept)

John’s Bank Account
Balance: $5,257

An object
(the realization)

Bill’s Bank Account
Balance: $1,245,069

Mary’s Bank Account
Balance: $16,833

Multiple objects
from the same class

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance
• One class can be used to derive another via

inheritance

• Classes can be organized into hierarchies

Bank
Account

Account

Charge
Account

Savings
Account

Checking
Account

© 2004 Pearson Addison-Wesley. All rights reserved

Classes

• A class can contain data declarations and method
declarations

int size, weight;
char category;

Data declarations

Method declarations

© 2004 Pearson Addison-Wesley. All rights reserved

Bank Account Example

acct1 72354acctNumber

102.56balance

name “Ted Murphy”

acct2 69713acctNumber

40.00balance

name “Jane Smith”

© 2004 Pearson Addison-Wesley. All rights reserved

Creating Objects

• A variable holds either a primitive type or a
reference to an object

• A class name can be used as a type to declare an
object reference variable

String title;

• No object is created with this declaration

• An object reference variable holds the address of
an object

• The object itself must be created separately

6

© 2004 Pearson Addison-Wesley. All rights reserved

Creating Objects

• Generally, we use the new operator to create an
object

title = new String ("Java Software Solutions");

This calls the String constructor, which is
a special method that sets up the object

• Creating an object is called instantiation

• An object is an instance of a particular class

© 2004 Pearson Addison-Wesley. All rights reserved

Invoking Methods

• We've seen that once an object has been
instantiated, we can use the dot operator to invoke
its methods

count = title.length()

• A method may return a value, which can be used
in an assignment or expression

• A method invocation can be thought of as asking
an object to perform a service

© 2004 Pearson Addison-Wesley. All rights reserved

References

• Note that a primitive variable contains the value
itself, but an object variable contains the address
of the object

• An object reference can be thought of as a pointer
to the location of the object

• Rather than dealing with arbitrary addresses, we
often depict a reference graphically

"Steve Jobs"name1

num1 38

© 2004 Pearson Addison-Wesley. All rights reserved

Assignment Revisited

• The act of assignment takes a copy of a value and
stores it in a variable

• For primitive types:

num1 38

num2 96
Before:

num2 = num1;

num1 38

num2 38
After:

© 2004 Pearson Addison-Wesley. All rights reserved

Reference Assignment

• For object references, assignment copies the
address:

name2 = name1;

name1

name2
Before:

"Steve Jobs"

"Steve Wozniak"

name1

name2
After:

"Steve Jobs"

© 2004 Pearson Addison-Wesley. All rights reserved

Storing an int

9278
9279
9280
9281
9282
9283
9284
9285
9286

int (32 bits = 4 bytes)

7

© 2004 Pearson Addison-Wesley. All rights reserved

Reference Variables

1023
1024
1025
1026
1027
1028
1029
1030
1031

����

2047
2048
2049
2050
2051
2052
2053
2054
2055

HH

ee

ll
ll

oo

..

© 2004 Pearson Addison-Wesley. All rights reserved

Aliases

• Two or more references that refer to the same
object are called aliases of each other

• That creates an interesting situation: one object
can be accessed using multiple reference
variables

• Aliases can be useful, but should be managed
carefully

• Changing an object through one reference
changes it for all of its aliases, because there is
really only one object

© 2004 Pearson Addison-Wesley. All rights reserved

Garbage Collection

• When an object no longer has any valid references
to it, it can no longer be accessed by the program

• The object is useless, and therefore is called
garbage

• Java performs automatic garbage collection
periodically, returning an object's memory to the
system for future use

• In other languages, the programmer is responsible
for performing garbage collection

© 2004 Pearson Addison-Wesley. All rights reserved

Bank Example Code

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

