
1

© 2004 Pearson Addison-Wesley. All rights reserved

September 11, 2006

Anatomy of an Object

ComS 207: Programming I (in Java)
Iowa State University, FALL 2006
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Quick review of last lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Methods in The Random Class

© 2004 Pearson Addison-Wesley. All rights reserved

Random Example

import java.util.Random;

...

Random generator = new Random();

int num = generator. nextInt();

float num2 = generator.nextFloat();

© 2004 Pearson Addison-Wesley. All rights reserved

Math
Class

© 2004 Pearson Addison-Wesley. All rights reserved

Math Example

value = Math.abs(total) + Math.pow(count, 4);

2

© 2004 Pearson Addison-Wesley. All rights reserved

Methods in NumberFormat Class

© 2004 Pearson Addison-Wesley. All rights reserved

NumberFormat Example

double dollars=5.994;

NumberFormat fmt = NumberFormat.getCurrencyInstance() ;

System.out.println (“Price = “ + fmt.format(dollars));

RESULT:

Price = $5.99

© 2004 Pearson Addison-Wesley. All rights reserved

Methods in DecimalFormat Class

© 2004 Pearson Addison-Wesley. All rights reserved

DecimalFormat Example

double miles = .5395;

DecimalFormat fmt = new DecimalFormat(“0.###”);

System.out.println (“Miles = “ + fmt.format(miles)) ;

RESULT:

Miles = 0.540

Miles = 0.54

© 2004 Pearson Addison-Wesley. All rights reserved

TestFormat.java example

© 2004 Pearson Addison-Wesley. All rights reserved

Wrapper Classes

• The java.lang package contains wrapper
classes that correspond to each primitive type:

Voidvoid

Booleanboolean

Characterchar

Doubledouble

Floatfloat

Longlong

Integerint

Shortshort

Bytebyte

Wrapper ClassPrimitive Type

3

© 2004 Pearson Addison-Wesley. All rights reserved

Integer Class

© 2004 Pearson Addison-Wesley. All rights reserved

Autoboxing Examples

Integer obj1;

int num1 = 69;

obj1 = num1; // automatically creates an

//integer object

Integer obj2= new Integer(69);

int num2;

num2 = obj2; // automatically extracts

//the int value

© 2004 Pearson Addison-Wesley. All rights reserved

TestInteger.java example

© 2004 Pearson Addison-Wesley. All rights reserved

Enumerated Types
(Section 3.7)

© 2004 Pearson Addison-Wesley. All rights reserved

Enumerated Types

• Java allows you to define an enumerated type,
which can then be used to declare variables

• An enumerated type establishes all possible
values for a variable of that type

• The values are identifiers of your own choosing

• The following declaration creates an enumerated
type called Season

enum Season {winter, spring, summer, fall};

• Any number of values can be listed

© 2004 Pearson Addison-Wesley. All rights reserved

Enumerated Types

• Once a type is defined, a variable of that type can
be declared

Season time;

and it can be assigned a value

time = Season.fall;

• The values are specified through the name of the
type

• Enumerated types are type-safe – you cannot
assign any value other than those listed

4

© 2004 Pearson Addison-Wesley. All rights reserved

Ordinal Values

• Internally, each value of an enumerated type is
stored as an integer, called its ordinal value

• The first value in an enumerated type has an
ordinal value of zero, the second one, and so on

• However, you cannot assign a numeric value to an
enumerated type, even if it corresponds to a valid
ordinal value

© 2004 Pearson Addison-Wesley. All rights reserved

Enumerated Types

• The declaration of an enumerated type is a special
type of class, and each variable of that type is an
object

• The ordinal method returns the ordinal value of
the object

• The name method returns the name of the identifier
corresponding to the object's value

• See IceCream.java (page 137)

© 2004 Pearson Addison-Wesley. All rights reserved

Run IceCream.java (page 137)
in the textbook

Chapter 4

Writing Classes

Chapter 4

Sections 4.1 & 4.2

© 2004 Pearson Addison-Wesley. All rights reserved

Writing Classes

• The programs we’ve written in previous examples
have used classes defined in the Java standard
class library

• Now we will begin to design programs that rely on
classes that we write ourselves

• The class that contains the main method is just
the starting point of a program

• True object-oriented programming is based on
defining classes that represent objects with well-
defined characteristics and functionality

5

© 2004 Pearson Addison-Wesley. All rights reserved

Classes and Objects

• Recall from our overview of objects in Chapter 1
that an object has state and behavior

• Consider a six-sided die (singular of dice)

� It’s state can be defined as which face is showing

� It’s primary behavior is that it can be rolled

• We can represent a die in software by designing a
class called Die that models this state and
behavior

� The class serves as the blueprint for a die object

• We can then instantiate as many die objects as we
need for any particular program

© 2004 Pearson Addison-Wesley. All rights reserved

Classes

• A class can contain data declarations and method
declarations

int size, weight;
char category;

Data declarations

Method declarations

© 2004 Pearson Addison-Wesley. All rights reserved

Classes

• The values of the data define the state of an objec t
created from the class

• The functionality of the methods define the
behaviors of the object

• For our Die class, we might declare an integer that
represents the current value showing on the face

• One of the methods would “roll” the die by setting
that value to a random number between one and
six

© 2004 Pearson Addison-Wesley. All rights reserved

Classes

• We’ll want to design the Die class with other data
and methods to make it a versatile and reusable
resource

• Any given program will not necessarily use all
aspects of a given class

• See RollingDice.java (page 157)
• See Die.java (page 158)

© 2004 Pearson Addison-Wesley. All rights reserved

The Die Class

• The Die class contains two data values

� a constant MAXthat represents the maximum face value

� an integer faceValue that represents the current face
value

• The roll method uses the random method of the
Math class to determine a new face value

• There are also methods to explicitly set and
retrieve the current face value at any time

© 2004 Pearson Addison-Wesley. All rights reserved

The toString Method

• All classes that represent objects should define a
toString method

• The toString method returns a character string
that represents the object in some way

• It is called automatically when an object is
concatenated to a string or when it is passed to
the println method

• System.out.println ("Die One: " + die1 + ", Die Two: " + die2);

6

© 2004 Pearson Addison-Wesley. All rights reserved

Constructors

• As mentioned previously, a constructor is a
special method that is used to set up an object
when it is initially created

• A constructor has the same name as the class

• The Die constructor is used to set the initial face
value of each new die object to one

• We examine constructors in more detail later in
this chapter

© 2004 Pearson Addison-Wesley. All rights reserved

Data Scope

• The scope of data is the area in a program in
which that data can be referenced (used)

• Data declared at the class level can be referenced
by all methods in that class

• Data declared within a method can be used only in
that method

• Data declared within a method is called local data

• In the Die class, the variable result is declared
inside the toString method -- it is local to that
method and cannot be referenced anywhere else

© 2004 Pearson Addison-Wesley. All rights reserved

Instance Data

• The faceValue variable in the Die class is called
instance data because each instance (object) that
is created has its own version of it

• A class declares the type of the data, but it does
not reserve any memory space for it

• Every time a Die object is created, a new
faceValue variable is created as well

• The objects of a class share the method
definitions, but each object has its own data space

• That's the only way two objects can have different
states

© 2004 Pearson Addison-Wesley. All rights reserved

Instance Data

• We can depict the two Die objects from the
RollingDice program as follows:

die1 5faceValue

die2 2faceValue

Each object maintains its own faceValue
variable, and thus its own state

© 2004 Pearson Addison-Wesley. All rights reserved

Run examples from the book

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

