
1

© 2004 Pearson Addison-Wesley. All rights reserved

October 6, 2006

Arrays

ComS 207: Programming I (in Java)
Iowa State University, FALL 2006
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Quick review of last lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Comparing while and do

statement

true false

condition
evaluated

The while Loop

true

condition
evaluated

statement

false

The do Loop

© 2004 Pearson Addison-Wesley. All rights reserved

The do Statement

• An example of a do loop:

• The body of a do loop executes at least once

• See ReverseNumber.java (page 244)

int count = 0;
do
{

count++;
System.out.println (count);

} while (count < 5);

© 2004 Pearson Addison-Wesley. All rights reserved

Logic of a for loop

statement

true

condition
evaluated

false

increment

initialization

© 2004 Pearson Addison-Wesley. All rights reserved

The for Statement

• A for statement has the following syntax:

for (initialization ; condition ; increment)
statement;

The initialization
is executed once

before the loop begins

The statement is
executed until the

condition becomes false

The increment portion is executed
at the end of each iteration

2

© 2004 Pearson Addison-Wesley. All rights reserved

The for Statement

• A for loop is functionally equivalent to the
following while loop structure:

initialization;
while (condition)
{

statement;
increment;

}

© 2004 Pearson Addison-Wesley. All rights reserved

How to use the jGRASP Debugger

© 2004 Pearson Addison-Wesley. All rights reserved © 2004 Pearson Addison-Wesley. All rights reserved

Other Things About Loops

• ‘break’ Statement

• ‘continue’ Statement

• Empty Statement - ‘;’

© 2004 Pearson Addison-Wesley. All rights reserved

The for Statement

• Each expression in the header of a for loop is
optional

• If the initialization is left out, no initializatio n is
performed

• If the condition is left out, it is always consider ed
to be true, and therefore creates an infinite loop

• If the increment is left out, no increment operatio n
is performed

Chapter 7

Arrays

3

© 2004 Pearson Addison-Wesley. All rights reserved

Arrays

• Arrays are objects that help us organize large
amounts of information

© 2004 Pearson Addison-Wesley. All rights reserved

Arrays

• An array is an ordered list of values

0 1 2 3 4 5 6 7 8 9

79 87 94 82 67 98 87 81 74 91

An array of size N is indexed from zero to N-1

scores

The entire array
has a single name

Each value has a numeric index

This array holds 10 values that are indexed from 0 to 9

© 2004 Pearson Addison-Wesley. All rights reserved

Arrays

• A particular value in an array is referenced using
the array name followed by the index in brackets

• For example, the expression

scores[2]

refers to the value 94 (the 3rd value in the array)

• That expression represents a place to store a
single integer and can be used wherever an
integer variable can be used

© 2004 Pearson Addison-Wesley. All rights reserved

Arrays

• For example, an array element can be assigned a
value, printed, or used in a calculation :

scores[2] = 89;

scores[first] = scores[first] + 2;

mean = (scores[0] + scores[1])/2;

System.out.println ("Top = " + scores[5]);

© 2004 Pearson Addison-Wesley. All rights reserved

Arrays
• The values held in an array are called array

elements

• An array stores multiple values of the same type –
the element type

• The element type can be a primitive type or an
object reference

• Therefore, we can create an array of integers, an
array of characters, an array of String objects, an
array of Coin objects, etc.

• In Java, the array itself is an object that must be
instantiated

© 2004 Pearson Addison-Wesley. All rights reserved

Arrays

• Another way to depict the scores array:

scores 79

87

94

82

67

98

87

81

74

91

4

© 2004 Pearson Addison-Wesley. All rights reserved

Declaring Arrays

• The scores array could be declared as follows:

int[] scores = new int[10];

• The type of the variable scores is int[] (an array
of integers)

• Note that the array type does not specify its size,
but each object of that type has a specific size

• The reference variable scores is set to a new array
object that can hold 10 integers

© 2004 Pearson Addison-Wesley. All rights reserved

Declaring Arrays

• Some other examples of array declarations:

float[] prices = new float[500];

boolean[] flags;

flags = new boolean[20];

char[] codes = new char[1750];

© 2004 Pearson Addison-Wesley. All rights reserved

Example: BasicArray.java (page 372)

© 2004 Pearson Addison-Wesley. All rights reserved

Example: ReverseOrder.java (page 375)

© 2004 Pearson Addison-Wesley. All rights reserved

Using Arrays

• The iterator version of the for loop can be used
when processing array elements

for (int score : scores)
System.out.println (score);

• This is only appropriate when processing all array
elements from top (lowest index) to bottom
(highest index)

• See BasicArray.java (page 372)

© 2004 Pearson Addison-Wesley. All rights reserved

What for/in can’t do
int[] primeNums = {2, 3, 5, 7, 11, 13, 17, 19};

for (int i=0; i< primeNums.length; i++)
{

System.out.print("primeNums[" + i + "]= “);

System.out.println(primeNums[i]);
}

5

© 2004 Pearson Addison-Wesley. All rights reserved

What for/in can’t do

String word="Test";

for (int i=0; i< word.length(); i++)

{
if(i>0)

System.out.print(“, “);

System.out.print(word.charAt(i));

}

© 2004 Pearson Addison-Wesley. All rights reserved

Other Stuff From Chapter 5

© 2004 Pearson Addison-Wesley. All rights reserved

Iterators

• An iterator is an object that allows you to process
a collection of items one at a time

• It lets you step through each item in turn and
process it as needed

• An iterator object has a hasNext method that
returns true if there is at least one more item to
process

• The next method returns the next item

• Iterator objects are defined using the Iterator
interface, which is discussed further in Chapter 6

© 2004 Pearson Addison-Wesley. All rights reserved

Iterators

• Several classes in the Java standard class library
are iterators

• The Scanner class is an iterator

� the hasNext method returns true if there is more data to
be scanned

� the next method returns the next scanned token as a
string

• The Scanner class also has variations on the
hasNext method for specific data types (such as
hasNextInt)

© 2004 Pearson Addison-Wesley. All rights reserved

Iterators

• The fact that a Scanner is an iterator is
particularly helpful when reading input from a file

• Suppose we wanted to read and process a list of
URLs stored in a file

• One scanner can be set up to read each line of the
input until the end of the file is encountered

• Another scanner can be set up for each URL to
process each part of the path

• See URLDissector.java (page 240)

© 2004 Pearson Addison-Wesley. All rights reserved

Example: URLDissector.java (page 240)

6

© 2004 Pearson Addison-Wesley. All rights reserved

Iterators and for Loops

• Recall that an iterator is an object that allows you
to process each item in a collection

• A variant of the for loop simplifies the repetitive
processing the items

• For example, if BookList is an iterator that
manages Book objects, the following loop will print
each book:

for (Book myBook : BookList)
System.out.println (myBook);

© 2004 Pearson Addison-Wesley. All rights reserved

Iterators and for Loops

• This style of for loop can be read "for each Book
in BookList , …"

• Therefore the iterator version of the for loop is
sometimes referred to as the foreach loop

• It eliminates the need to call the hasNext and
next methods explicitly

• It also will be helpful when processing arrays,
which are discussed in Chapter 7

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

