
1

© 2004 Pearson Addison-Wesley. All rights reserved

October 25, 2006

Recursion
(part 1)

ComS 207: Programming I (in Java)
Iowa State University, FALL 2006
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Administrative announcements

• The Final Exam is on Wednesday Dec 13
@ 2:15 – 4:15pm (room TBD)

• No class On Friday November 17
(That’s the Friday before Thanksgiving Break)

Chapter 11

Recursion

© 2004 Pearson Addison-Wesley. All rights reserved

Recursion

Recursion is a fundamental programming
technique that can provide an elegant solution
certain kinds of problems.

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Thinking

• A recursive definition is one which uses the word
or concept being defined in the definition itself

• When defining an English word, a recursive
definition is often not helpful

• But in other situations, a recursive definition can
be an appropriate way to express a concept

• Before applying recursion to programming, it is
best to practice thinking recursively

© 2004 Pearson Addison-Wesley. All rights reserved

Circular Definitions

• Debugger – a tool that is used for debugging

2

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Definitions

• Consider the following list of numbers:

24, 88, 40, 37

• Such a list can be defined as follows:

A LIST is a: number

or a: number comma LIST

• That is, a LIST is defined to be a single number, o r
a number followed by a comma followed by a LIST

• The concept of a LIST is used to define itself

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Definitions

• The recursive part of the LIST definition is
used several times, terminating with the
non-recursive part:

number comma LIST
24 , 88, 40, 37

number comma LIST
88 , 40, 37

number comma LIST
40 , 37

number
37

© 2004 Pearson Addison-Wesley. All rights reserved

Infinite Recursion

• All recursive definitions have to have a non-
recursive part

• If they didn't, there would be no way to terminate
the recursive path

• Such a definition would cause infinite recursion

• This problem is similar to an infinite loop, but th e
non-terminating "loop" is part of the definition
itself

• The non-recursive part is often called the base
case

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Definitions

• N!, for any positive integer N, is defined to be th e
product of all integers between 1 and N inclusive

• This definition can be expressed recursively as:

1! = 1

N! = N * (N-1)!

• A factorial is defined in terms of another factoria l

• Eventually, the base case of 1! is reached

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Definitions

5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1

2

6

24

120

© 2004 Pearson Addison-Wesley. All rights reserved

Example: Factorial_Iterative .java

3

© 2004 Pearson Addison-Wesley. All rights reserved

Example: Factorial_Recursive .java

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Programming

• A method in Java can invoke itself; if set up that
way, it is called a recursive method

• The code of a recursive method must be
structured to handle both the base case and the
recursive case

• Each call to the method sets up a new execution
environment, with new parameters and local
variables

• As with any method call, when the method
completes, control returns to the method that
invoked it (which may be an earlier invocation of
itself)

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Programming

• Consider the problem of computing the sum of all
the numbers between 1 and any positive integer N

• This problem can be recursively defined as:

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Programming

// This method returns the sum of 1 to num

public int sum (int num)

{

int result;

if (num == 1)

result = 1;

else

result = num + sum (n-1);

return result;

}

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Programming

main

sum

sum

sum

sum(3)

sum(1)

sum(2)

result = 1

result = 3

result = 6

© 2004 Pearson Addison-Wesley. All rights reserved

Example: Sum_Iterative .java

4

© 2004 Pearson Addison-Wesley. All rights reserved

Example: Sum_Recursive .java

© 2004 Pearson Addison-Wesley. All rights reserved

Example: Fibonacci_Iterative .java

© 2004 Pearson Addison-Wesley. All rights reserved

Example: Fibonacci_Recursive .java

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

