
1

© 2004 Pearson Addison-Wesley. All rights reserved

October 27, 2006

Recursion
(part 2)

ComS 207: Programming I (in Java)
Iowa State University, FALL 2006
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Examples of Recursion

© 2004 Pearson Addison-Wesley. All rights reserved [http://www.math.ubc.ca/~jbryan/] © 2004 Pearson Addison-Wesley. All rights reserved http://www.bfoit.org/Intro_to_Programming/TT_Recursion.html]

© 2004 Pearson Addison-Wesley. All rights reserved http://www.bfoit.org/Intro_to_Programming/TT_Recursion.html] © 2004 Pearson Addison-Wesley. All rights reserved [http://cs.wellesley.edu/~cs111/spring03/unravel.gif]

2

© 2004 Pearson Addison-Wesley. All rights reserved [http://cs.wellesley.edu/~cs111/spring03/unravel.gif] © 2004 Pearson Addison-Wesley. All rights reserved

The von Koch Curve and Snowflake

[http://www.bfoit.org/Intro_to_Programming/TT_Recursion.html]

© 2004 Pearson Addison-Wesley. All rights reserved

Divide it into three equal parts

[http://www.bfoit.org/Intro_to_Programming/TT_Recursion.html] © 2004 Pearson Addison-Wesley. All rights reserved

Replace the inner third of it with an
equilateral triangle

[http://www.bfoit.org/Intro_to_Programming/TT_Recursion.html]

© 2004 Pearson Addison-Wesley. All rights reserved

Repeat the first two steps on all lines of
the new figure

[http://www.bfoit.org/Intro_to_Programming/TT_Recursion.html] © 2004 Pearson Addison-Wesley. All rights reserved

[http://www.cs.iastate.edu/~leavens/T-Shirts/227-342-recursion-front.JPG]

3

© 2004 Pearson Addison-Wesley. All rights reserved

Quick review of last lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Definitions

• Consider the following list of numbers:

24, 88, 40, 37

• Such a list can be defined as follows:

A LIST is a: number

or a: number comma LIST

• That is, a LIST is defined to be a single number, o r
a number followed by a comma followed by a LIST

• The concept of a LIST is used to define itself

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Definitions

• The recursive part of the LIST definition is
used several times, terminating with the
non-recursive part:

number comma LIST
24 , 88, 40, 37

number comma LIST
88 , 40, 37

number comma LIST
40 , 37

number
37

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Definitions

• N!, for any positive integer N, is defined to be th e
product of all integers between 1 and N inclusive

• This definition can be expressed recursively as:

1! = 1

N! = N * (N-1)!

• A factorial is defined in terms of another factoria l

• Eventually, the base case of 1! is reached

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Definitions

5!

5 * 4!

4 * 3!

3 * 2!

2 * 1!

1

2

6

24

120

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Execution
6!
(6 * 5!)
(6 * (5 * 4!))
(6 * (5 * (4 * 3!)))
(6 * (5 * (4 * (3 * 2!))))
(6 * (5 * (4 * (3 * (2 * 1!)))))
(6 * (5 * (4 * (3 * (2 * (1 * 0!))))))

(6 * (5 * (4 * (3 * (2 * (1 * 1))))))
(6 * (5 * (4 * (3 * (2 * 1)))))
(6 * (5 * (4 * (3 * 2))))
(6 * (5 * (4 * 6)))

(6 * (5 * 24))
(6 * 120)
720

4

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Programming

• Consider the problem of computing the sum of all
the numbers between 1 and any positive integer N

• This problem can be recursively defined as:

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Programming

// This method returns the sum of 1 to num

public int sum (int num)

{

int result;

if (num == 1)

result = 1;

else

result = num + sum (n-1);

return result;

}

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Programming

main

sum

sum

sum

sum(3)

sum(1)

sum(2)

result = 1

result = 3

result = 6 Chapter 11

Recursion

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Programming

• Note that just because we can use recursion to
solve a problem, doesn't mean we should

• For instance, we usually would not use recursion
to solve the sum of 1 to N problem, because the
iterative version is easier to understand

• However, for some problems, recursion provides
an elegant solution, often cleaner than an iterativ e
version

• You must carefully decide whether recursion is the
correct technique for any problem

© 2004 Pearson Addison-Wesley. All rights reserved

Maze Traversal

• We can use recursion to find a path through a
maze

• From each location, we can search in each
direction

• Recursion keeps track of the path through the
maze

• The base case is an invalid move or reaching the
final destination

• See MazeSearch.java (page 583)
• See Maze.java (page 584)

5

© 2004 Pearson Addison-Wesley. All rights reserved

Traversing a maze

© 2004 Pearson Addison-Wesley. All rights reserved

© 2004 Pearson Addison-Wesley. All rights reserved © 2004 Pearson Addison-Wesley. All rights reserved

© 2004 Pearson Addison-Wesley. All rights reserved © 2004 Pearson Addison-Wesley. All rights reserved

Towers of Hanoi

• The Towers of Hanoi is a puzzle made up of three
vertical pegs and several disks that slide on the
pegs

• The disks are of varying size, initially placed on
one peg with the largest disk on the bottom with
increasingly smaller ones on top

• The goal is to move all of the disks from one peg
to another under the following rules:

� We can move only one disk at a time

� We cannot move a larger disk on top of a smaller on e

6

© 2004 Pearson Addison-Wesley. All rights reserved

Towers of Hanoi

Original Configuration Move 1

Move 3Move 2

© 2004 Pearson Addison-Wesley. All rights reserved

Towers of Hanoi

Move 4 Move 5

Move 6 Move 7 (done)

© 2004 Pearson Addison-Wesley. All rights reserved

Animation of the Towers of Hanoi

http://www.cs.concordia.ca/~twang/
WangApr01/RootWang.html

© 2004 Pearson Addison-Wesley. All rights reserved

Towers of Hanoi

• An iterative solution to the Towers of Hanoi is
quite complex

• A recursive solution is much shorter and more
elegant

• See SolveTowers.java (page 590)
• See TowersOfHanoi.java (page 591)

© 2004 Pearson Addison-Wesley. All rights reserved

Fractals

• A fractal is a geometric shape made up of the
same pattern repeated in different sizes and
orientations

• The Koch Snowflake is a particular fractal that
begins with an equilateral triangle

• To get a higher order of the fractal, the sides of the
triangle are replaced with angled line segments

• See KochSnowflake.java (page 597)
• See KochPanel.java (page 600)

© 2004 Pearson Addison-Wesley. All rights reserved

Koch Snowflakes

< x5, y5>

< x1, y1>

Becomes

< x5, y5>

< x1, y1>

< x4, y4>

< x2, y2>

< x3, y3>

7

© 2004 Pearson Addison-Wesley. All rights reserved

Koch Snowflakes

© 2004 Pearson Addison-Wesley. All rights reserved

Koch Snowflakes

© 2004 Pearson Addison-Wesley. All rights reserved

Indirect Recursion

• A method invoking itself is considered to be direct
recursion

• A method could invoke another method, which
invokes another, etc., until eventually the origina l
method is invoked again

• For example, method m1 could invoke m2, which
invokes m3, which in turn invokes m1 again

• This is called indirect recursion, and requires all
the same care as direct recursion

• It is often more difficult to trace and debug

© 2004 Pearson Addison-Wesley. All rights reserved

Indirect Recursion

m1 m2 m3

m1 m2 m3

m1 m2 m3

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

