
1

© 2004 Pearson Addison-Wesley. All rights reserved

November 1, 2006

Static Class Members

ComS 207: Programming I (in Java)
Iowa State University, FALL 2006
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Go Over Midterm2 Solutions

© 2004 Pearson Addison-Wesley. All rights reserved

HW 8 is out

• Also Check out this web page:

http://www.cs.princeton.edu/introcs/23recursion/

© 2004 Pearson Addison-Wesley. All rights reserved

The Eight Queens Problem

[http://home.earthlink.net/~barnold2002/Acgnj/Csig9908.htm]

© 2004 Pearson Addison-Wesley. All rights reserved

Recursion Example

public static void main(String[] args)
{

int result = factorial(3);
System.out.println(result);

}

public static int factorial(int n)
{

if(n==1)
return 1;

else
return n* factorial(n-1);

}

Code

Stack

main

factorial(3)

factorial(2)

factorial(1)

© 2004 Pearson Addison-Wesley. All rights reserved

Recursion Example

public static void main(String[] args)
{

int result = factorial(3);
System.out.println(result);

}

public static int factorial(int n)
{

if(n==1)
return 1;

else
return n* factorial(n-1);

}

Code

Stack

main

factorial(3)

factorial(2)

factorial(1)

2

Chapter 6

Object-Oriented
Design

© 2004 Pearson Addison-Wesley. All rights reserved

Static Class Members
• Recall that a static method is one that can be

invoked through its class name

• For example, the methods of the Math class are
static:

result = Math.sqrt(25)

• Variables can be static as well

• Determining if a method or variable should be
static is an important design decision

© 2004 Pearson Addison-Wesley. All rights reserved

Static Methods

class Helper
{

public static int cube (int num)
{

return num * num * num;
}

}

Because it is declared as static, the method
can be invoked as

value = Helper.cube(5);

© 2004 Pearson Addison-Wesley. All rights reserved

The static Modifier

• We declare static methods and variables using the
static modifier

• It associates the method or variable with the class
rather than with an object of that class

• Static methods are sometimes called class
methods and static variables are sometimes called
class variables

© 2004 Pearson Addison-Wesley. All rights reserved

Static Variables

• Normally, each object has its own data space, but
if a variable is declared as static, only one copy of
the variable exists

private static float price;

• Memory space for a static variable is created
when the class is first referenced

• All objects instantiated from the class share its
static variables

• Changing the value of a static variable in one
object changes it for all others

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Modifiers

public private

Variables

Methods
Provide services

to clients

Support other
methods in the

class

Enforce
encapsulation

Violate
encapsulation

3

© 2004 Pearson Addison-Wesley. All rights reserved

Static Class Members

• The order of the modifiers can be interchanged,
but by convention visibility modifiers come first

• Recall that the main method is static – it is invoked
by the Java interpreter without creating an object

• Static methods cannot reference instance
variables because instance variables don't exist
until an object exists

• However, a static method can reference static
variables or local variables

© 2004 Pearson Addison-Wesley. All rights reserved

Classes

• A class can contain data declarations and method
declarations

int size;
int weight;

Data declarations

Method declarations

© 2004 Pearson Addison-Wesley. All rights reserved

Objects – instances of classes

int size =5;
int weight= 170;

int size =10;
int weight= 130;

obj1 obj2

© 2004 Pearson Addison-Wesley. All rights reserved

Note that the variables can have
different values in the two objects

int size =5;
int weight= 170;

int size =10;
int weight= 130;

obj1 obj2

© 2004 Pearson Addison-Wesley. All rights reserved

Classes

• Things change if we declare a static variable

static int size;
int weight;

Data declarations

Method declarations

© 2004 Pearson Addison-Wesley. All rights reserved

Objects – instances of a class with a
static variable ‘size’

int weight= 170; int weight= 130;

obj1 obj2

static int size;

4

© 2004 Pearson Addison-Wesley. All rights reserved

Static allocation

• Static allocation means allocation of storage
before the program starts and retention until the
end.

• The locations of objects are basically decided at
compile-time, although they might be relocated at
load-time. This implies the sizes of the objects
must be known then.

[http://www.memorymanagement.org/glossary/s.html] © 2004 Pearson Addison-Wesley. All rights reserved

Limitations

Using only static allocation is restrictive, as siz es
of data structures can't be dynamically varied, and
procedures cannot be recursive. However, it is
also fast and eliminates the possibility of running
out of memory. For this reason, this scheme is
sometimes used in real-time systems.

[http://www.memorymanagement.org/glossary/s.html]

© 2004 Pearson Addison-Wesley. All rights reserved

Historical note

The first high-level language, Fortran, only had
static allocation to begin with. Later languages
usually offer heap and/or stack allocation, but
static allocation is often available as an option.

[http://www.memorymanagement.org/glossary/s.html] © 2004 Pearson Addison-Wesley. All rights reserved

Static Class Members

• Static methods and static variables often work
together

• The following example keeps track of how many
Slogan objects have been created using a static
variable, and makes that information available
using a static method

• See SloganCounter.java (page 294)
• See Slogan.java (page 295)

© 2004 Pearson Addison-Wesley. All rights reserved

Sections 6.1 & 6.2
(dry stuff that you can read on your own)

© 2004 Pearson Addison-Wesley. All rights reserved

Program Development

• The creation of software involves four basic
activities:

� establishing the requirements

� creating a design

� implementing the code

� testing the implementation

• These activities are not strictly linear – they
overlap and interact

5

© 2004 Pearson Addison-Wesley. All rights reserved

Requirements

• Software requirements specify the tasks that a
program must accomplish

� what to do, not how to do it

• Often an initial set of requirements is provided, b ut
they should be critiqued and expanded

• It is difficult to establish detailed, unambiguous,
and complete requirements

• Careful attention to the requirements can save
significant time and expense in the overall project

© 2004 Pearson Addison-Wesley. All rights reserved

Design

• A software design specifies how a program will
accomplish its requirements

• That is, a software design determines:

� how the solution can be broken down into manageable
pieces

� what each piece will do

• An object-oriented design determines which
classes and objects are needed, and specifies
how they will interact

• Low level design details include how individual
methods will accomplish their tasks

© 2004 Pearson Addison-Wesley. All rights reserved

Implementation

• Implementation is the process of translating a
design into source code

• Novice programmers often think that writing code
is the heart of software development, but actually
it should be the least creative step

• Almost all important decisions are made during
requirements and design stages

• Implementation should focus on coding details,
including style guidelines and documentation

© 2004 Pearson Addison-Wesley. All rights reserved

Testing

• Testing attempts to ensure that the program will
solve the intended problem under all the
constraints specified in the requirements

• A program should be thoroughly tested with the
goal of finding errors

• Debugging is the process of determining the
cause of a problem and fixing it

• We revisit the details of the testing process later in
this chapter

© 2004 Pearson Addison-Wesley. All rights reserved

Identifying Classes and Objects

• The core activity of object-oriented design is
determining the classes and objects that will make
up the solution

• The classes may be part of a class library, reused
from a previous project, or newly written

• One way to identify potential classes is to identif y
the objects discussed in the requirements

• Objects are generally nouns, and the services that
an object provides are generally verbs

© 2004 Pearson Addison-Wesley. All rights reserved

Identifying Classes and Objects

• A partial requirements document:

The user must be allowed to specify each product by
its primary characteristics, including its name and
product number. If the bar code does not match the
product, then an error should be generated to the
message window and entered into the error log. The
summary report of all transactions must be structured
as specified in section 7.A.

Of course, not all nouns will correspond to
a class or object in the final solution

6

© 2004 Pearson Addison-Wesley. All rights reserved

Identifying Classes and Objects

• Remember that a class represents a group
(classification) of objects with the same behaviors

• Generally, classes that represent objects should
be given names that are singular nouns

• Examples: Coin, Student, Message

• A class represents the concept of one such object

• We are free to instantiate as many of each object
as needed

© 2004 Pearson Addison-Wesley. All rights reserved

Identifying Classes and Objects

• Sometimes it is challenging to decide whether
something should be represented as a class

• For example, should an employee's address be
represented as a set of instance variables or as an
Address object

• The more you examine the problem and its details
the more clear these issues become

• When a class becomes too complex, it often
should be decomposed into multiple smaller
classes to distribute the responsibilities

© 2004 Pearson Addison-Wesley. All rights reserved

Identifying Classes and Objects

• We want to define classes with the proper amount
of detail

• For example, it may be unnecessary to create
separate classes for each type of appliance in a
house

• It may be sufficient to define a more general
Appliance class with appropriate instance data

• It all depends on the details of the problem being
solved

© 2004 Pearson Addison-Wesley. All rights reserved

Identifying Classes and Objects

• Part of identifying the classes we need is the
process of assigning responsibilities to each class

• Every activity that a program must accomplish
must be represented by one or more methods in
one or more classes

• We generally use verbs for the names of methods

• In early stages it is not necessary to determine
every method of every class – begin with primary
responsibilities and evolve the design

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

