
1

© 2004 Pearson Addison-Wesley. All rights reserved

November 6, 2006

Interfaces

ComS 207: Programming I (in Java)
Iowa State University, FALL 2006
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Quick Review of Last Lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Objects – instances of a class with a
static variable ‘size’

int weight= 170; int weight= 130;

obj1 obj2

static int size;
© 2004 Pearson Addison-Wesley. All rights reserved

Objects – instances of classes

• Note that the variables can have different values i n
the two objects

int size =5;
int weight= 170;

int size =10;
int weight= 130;

© 2004 Pearson Addison-Wesley. All rights reserved

Static Class Members

• The order of the modifiers can be interchanged,
but by convention visibility modifiers come first

• Recall that the main method is static – it is invoked
by the Java interpreter without creating an object

• Static methods cannot reference instance
variables because instance variables don't exist
until an object exists

• However, a static method can reference static
variables or local variables

© 2004 Pearson Addison-Wesley. All rights reserved

Static Class Members
• Recall that a static method is one that can be

invoked through its class name

• For example, the methods of the Math class are
static:

result = Math.sqrt(25);

• Variables can be static as well

• Determining if a method or variable should be
static is an important design decision

2

© 2004 Pearson Addison-Wesley. All rights reserved

Static Methods

class Helper
{

public static int cube (int num)
{

return num * num * num;
}

}

Because it is declared as static, the method
can be invoked as

value = Helper.cube(5);

© 2004 Pearson Addison-Wesley. All rights reserved

myMethod();

myMethodcompute

Method Control Flow

• If the called method is in the same class, only the
method name is needed

© 2004 Pearson Addison-Wesley. All rights reserved

myMethod();

myMethodcompute

Accessing Variables

• If the called method is in the same class, only the
method name is needed

int myVariable;

myVariable=5; OK

© 2004 Pearson Addison-Wesley. All rights reserved

myMethod();

myMethodcompute

Accessing Variables

• Static methods cannot use non static class
variables.

int myVariable;

myVariable=5; Error

static

© 2004 Pearson Addison-Wesley. All rights reserved

myMethod();

myMethodcompute

Accessing Variables

• Static methods can use static class varables

static int myVariable;

myVariable=5; OK

static

© 2004 Pearson Addison-Wesley. All rights reserved

Class Helper

static cube static helpMe

helpMe();Helper.cube();

main

Method Control Flow

• Static methods can only call other static methods
within the same classs

3

Chapter 6

Section 6.4

© 2004 Pearson Addison-Wesley. All rights reserved

Class Relationships

• Classes in a software system can have various
types of relationships to each other

• Three of the most common relationships:

� Dependency: A uses B

� Aggregation: A has-a B

� Inheritance: A is-a B

© 2004 Pearson Addison-Wesley. All rights reserved

Dependency

• A dependency exists when one class relies on
another in some way, usually by invoking the
methods of the other

• We've seen dependencies in many previous
examples

• We don't want numerous or complex
dependencies among classes

• Nor do we want complex classes that don't depend
on others

• A good design strikes the right balance

© 2004 Pearson Addison-Wesley. All rights reserved

Dependency Example: Client-Server

© 2004 Pearson Addison-Wesley. All rights reserved

Dependency
• Some dependencies occur between objects of the

same class

• A method of the class may accept an object of the
same class as a parameter

• For example, the concat method of the String
class takes as a parameter another String object

str3 = str1.concat(str2);

• This drives home the idea that the service is being
requested from a particular object

© 2004 Pearson Addison-Wesley. All rights reserved

concat(String s)

Concatenation Example

str1 str2

concat(String s)

4

© 2004 Pearson Addison-Wesley. All rights reserved

Dependency
• The following example defines a class called
Rational to represent a rational number

• A rational number is a value that can be
represented as the ratio of two integers

• Some methods of the Rational class accept
another Rational object as a parameter

• See RationalTester.java (page 297)
• See Rational.java (page 299)

© 2004 Pearson Addison-Wesley. All rights reserved

Representing Rational Numbers

• public class RationalNumber
{

private int numerator, denominator;

// …

• }

© 2004 Pearson Addison-Wesley. All rights reserved

Adding Two rational numbers

public RationalNumber add (RationalNumber op2)

{
int commonDenominator = denominator *op2.getDenominator();

int numerator1 = numerator * op2.getDenominator();

int numerator2 = op2.getNumerator() * denominator;

int sum = numerator1 + numerator2;

return new RationalNumber (sum, commonDenominator);

}

© 2004 Pearson Addison-Wesley. All rights reserved

Aggregation

• An aggregate is an object that is made up of other
objects

• Therefore aggregation is a has-a relationship

� A car has a chassis

� A student has an address

© 2004 Pearson Addison-Wesley. All rights reserved

Aggregation

• In software, an aggregate object contains
references to other objects as instance
data

• The aggregate object is defined in part by
the objects that make it up

• This is a special kind of dependency – the
aggregate usually relies on the objects that
compose it

© 2004 Pearson Addison-Wesley. All rights reserved

Aggregation Example:
Copmonents of a Student

5

© 2004 Pearson Addison-Wesley. All rights reserved

Student

Home Address School Address

First Name Last Name

© 2004 Pearson Addison-Wesley. All rights reserved

john

21 Jump Street 800 Lancaster Ave.

John Smith

© 2004 Pearson Addison-Wesley. All rights reserved

marsha

123 Main Street 800 Lancaster Ave.

Marsha Jones

© 2004 Pearson Addison-Wesley. All rights reserved

Aggregation

• In the following example, a Student object is
composed, in part, of Address objects

• A student has an address (in fact each student has
two addresses)

• See StudentBody.java (page 304)
• See Student.java (page 306)
• See Address.java (page 307)

• An aggregation association is shown in a UML
class diagram using an open diamond at the
aggregate end

© 2004 Pearson Addison-Wesley. All rights reserved

Other Stuff from Section 6.4

© 2004 Pearson Addison-Wesley. All rights reserved

A More Complicated Student Example

Home Address School Address

Degree ProgramUniversityName

6

© 2004 Pearson Addison-Wesley. All rights reserved

How would you write the code for the
more complicated student example?

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance is discussed in Chapter 8

Man Woman

Abstract
Person

© 2004 Pearson Addison-Wesley. All rights reserved

Condo

Mansion

5 bedroom
house

Abstract
Home

© 2004 Pearson Addison-Wesley. All rights reserved

The this Reference

• The this reference allows an object to refer to
itself

• That is, the this reference, used inside a method,
refers to the object through which the method is
being executed

• Suppose the this reference is used in a method
called tryMe, which is invoked as follows:

obj1.tryMe();

obj2.tryMe();

• In the first invocation, the this reference refers to
obj1; in the second it refers to obj2

© 2004 Pearson Addison-Wesley. All rights reserved

The this reference

• The this reference can be used to distinguish the
instance variables of a class from corresponding
method parameters with the same names

• The constructor of the Account class (from
Chapter 4) could have been written as follows:

public Account (Sring name, long acctNumber,
double balance)

{
this.name = name;
this.acctNumber = acctNumber;
this.balance = balance;

}

© 2004 Pearson Addison-Wesley. All rights reserved

The this reference

public Account (Sring name, long acctNumber,
double balance)

{
this.name = name;
this.acctNumber = acctNumber;
this.balance = balance;

}

public Account (Sring owner, long account,
double initial)

{
name = owner;
acctNumber = account;
balance = initial;

}

7

Chapter 6

Section 6.5 – 6.6

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

• A Java interface is a collection of abstract
methods and constants

• An abstract method is a method header without a
method body

• An abstract method can be declared using the
modifier abstract, but because all methods in an
interface are abstract, usually it is left off

• An interface is used to establish a set of methods
that a class will implement

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

public interface Doable
{

public void doThis();
public void doThat();
public void doThis2 (float value, char ch);
public boolean doTheOther (int num);

}

interface is a reserved word
None of the methods in
an interface are given

a definition (body)

A semicolon immediately
follows each method header

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

• An interface cannot be instantiated

• Methods in an interface have public visibility by
default

• A class formally implements an interface by:

� stating so in the class header

� providing implementations for each abstract method in
the interface

• If a class asserts that it implements an interface, it
must define all methods in the interface

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

public class CanDo implements Doable
{

public void doThis ()
{

// whatever
}

public void doThat ()
{

// whatever
}

// etc.
}

implements is a
reserved word

Each method listed
in Doable is

given a definition

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces
• A class that implements an interface can

implement other methods as well

• See Complexity.java (page 310)

• See Question.java (page 311)

• See MiniQuiz.java (page 313)

• In addition to (or instead of) abstract methods, an
interface can contain constants

• When a class implements an interface, it gains
access to all its constants

8

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

• A class can implement multiple interfaces

• The interfaces are listed in the implements clause

• The class must implement all methods in all
interfaces listed in the header

class ManyThings implements interface1, interface2

{

// all methods of both interfaces

}

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

• The Java standard class library contains many
helpful interfaces

• The Comparable interface contains one abstract
method called compareTo, which is used to
compare two objects

• We discussed the compareTo method of the
String class in Chapter 5

• The String class implements Comparable, giving
us the ability to put strings in lexicographic orde r

© 2004 Pearson Addison-Wesley. All rights reserved

Where ca you find the standard Java
interfaces
• C:\Program Files\Java\jdk1.5.0\src.zip

© 2004 Pearson Addison-Wesley. All rights reserved

The Comparable Interface

• Any class can implement Comparable to provide a
mechanism for comparing objects of that type

if (obj1.compareTo(obj2) < 0)

System.out.println ("obj1 is less than obj2");

• The value returned from compareTo should be
negative is obj1 is less that obj2, 0 if they are
equal, and positive if obj1 is greater than obj2

• When a programmer designs a class that
implements the Comparable interface, it should
follow this intent

© 2004 Pearson Addison-Wesley. All rights reserved

The Comparable Interface

• It's up to the programmer to determine what
makes one object less than another

• For example, you may define the compareTo
method of an Employee class to order employees
by name (alphabetically) or by employee number

• The implementation of the method can be as
straightforward or as complex as needed for the
situation

© 2004 Pearson Addison-Wesley. All rights reserved

The Iterator Interface

• As we discussed in Chapter 5, an iterator is an
object that provides a means of processing a
collection of objects one at a time

• An iterator is created formally by implementing the
Iterator interface, which contains three methods

• The hasNext method returns a boolean result –
true if there are items left to process

• The next method returns the next object in the
iteration

• The remove method removes the object most
recently returned by the next method

9

© 2004 Pearson Addison-Wesley. All rights reserved

The Iterator Interface

• By implementing the Iterator interface, a class
formally establishes that objects of that type are
iterators

• The programmer must decide how best to
implement the iterator functions

• Once established, the for-each version of the for
loop can be used to process the items in the
iterator

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

• You could write a class that implements certain
methods (such as compareTo) without formally
implementing the interface (Comparable)

• However, formally establishing the relationship
between a class and an interface allows Java to
deal with an object in certain ways

• Interfaces are a key aspect of object-oriented
design in Java

• We discuss this idea further in Chapter 9

© 2004 Pearson Addison-Wesley. All rights reserved

Interface Example:

Sortable.java
SortableIntArray.java

SortableStrigArray.java
SortingTest.java

© 2004 Pearson Addison-Wesley. All rights reserved

Enumerated Types
(read on your own)

© 2004 Pearson Addison-Wesley. All rights reserved

Enumerated Types

• In Chapter 3 we introduced enumerated types,
which define a new data type and list all possible
values of that type

enum Season {winter, spring, summer, fall}

• Once established, the new type can be used to
declare variables

Season time;

• The only values this variable can be assigned are
the ones established in the enum definition

© 2004 Pearson Addison-Wesley. All rights reserved

Enumerated Types

• An enumerated type definition is a special kind of
class

• The values of the enumerated type are objects of
that type

• For example, fall is an object of type Season

• That's why the following assignment is valid

time = Season.fall;

10

© 2004 Pearson Addison-Wesley. All rights reserved

Enumerated Types

• An enumerated type definition can be more
interesting than a simple list of values

• Because they are like classes, we can add
additional instance data and methods

• We can define an enum constructor as well

• Each value listed for the enumerated type calls the
constructor

• See Season.java (page 318)
• See SeasonTester.java (page 319)

© 2004 Pearson Addison-Wesley. All rights reserved

Enumerated Types

• Every enumerated type contains a static method
called values that returns a list of all possible
values for that type

• The list returned from values is an iterator, so a
for loop can be used to process them easily

• An enumerated type cannot be instantiated
outside of its own definition

• A carefully designed enumerated type provides a
versatile and type-safe mechanism for managing
data

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

