
1

© 2004 Pearson Addison-Wesley. All rights reserved

November 8, 2006

Method Design &
Method Overloading

ComS 207: Programming I (in Java)
Iowa State University, FALL 2006
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Quick Review of Last Lecture

© 2004 Pearson Addison-Wesley. All rights reserved

The this Reference

• The this reference allows an object to refer to
itself

• That is, the this reference, used inside a method,
refers to the object through which the method is
being executed

• Suppose the this reference is used in a method
called tryMe, which is invoked as follows:

obj1.tryMe();

obj2.tryMe();

• In the first invocation, the this reference refers to
obj1; in the second it refers to obj2

© 2004 Pearson Addison-Wesley. All rights reserved

The this reference

• The this reference can be used to distinguish the
instance variables of a class from corresponding
method parameters with the same names

• The constructor of the Account class (from
Chapter 4) could have been written as follows:

public Account (Sring name, long acctNumber,
double balance)

{
this.name = name;
this.acctNumber = acctNumber;
this.balance = balance;

}

© 2004 Pearson Addison-Wesley. All rights reserved

The this reference

public Account (Sring name, long acctNumber,
double balance)

{
this.name = name;
this.acctNumber = acctNumber;
this.balance = balance;

}

public Account (Sring owner, long account,
double initial)

{
name = owner;
acctNumber = account;
balance = initial;

}

Chapter 6

Section 6.5 – 6.6

2

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

• A Java interface is a collection of abstract
methods and constants

• An abstract method is a method header without a
method body

• An abstract method can be declared using the
modifier abstract, but because all methods in an
interface are abstract, usually it is left off

• An interface is used to establish a set of methods
that a class will implement

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

public interface Doable
{

public void doThis();
public void doThat();
public void doThis2 (float value, char ch);
public boolean doTheOther (int num);

}

interface is a reserved word
None of the methods in
an interface are given

a definition (body)

A semicolon immediately
follows each method header

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

• An interface cannot be instantiated

• Methods in an interface have public visibility by
default

• A class formally implements an interface by:

� stating so in the class header

� providing implementations for each abstract method in
the interface

• If a class asserts that it implements an interface, it
must define all methods in the interface

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

public class CanDo implements Doable
{

public void doThis ()
{

// whatever
}

public void doThat ()
{

// whatever
}

// etc.
}

implements is a
reserved word

Each method listed
in Doable is

given a definition

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces
• A class that implements an interface can

implement other methods as well

• See Complexity.java (page 310)

• See Question.java (page 311)

• See MiniQuiz.java (page 313)

• In addition to (or instead of) abstract methods, an
interface can contain constants

• When a class implements an interface, it gains
access to all its constants

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

• A class can implement multiple interfaces

• The interfaces are listed in the implements clause

• The class must implement all methods in all
interfaces listed in the header

class ManyThings implements interface1, interface2

{

// all methods of both interfaces

}

3

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

• The Java standard class library contains many
helpful interfaces

• The Comparable interface contains one abstract
method called compareTo, which is used to
compare two objects

• We discussed the compareTo method of the
String class in Chapter 5

• The String class implements Comparable, giving
us the ability to put strings in lexicographic orde r

© 2004 Pearson Addison-Wesley. All rights reserved

Where ca you find the standard Java
interfaces
• C:\Program Files\Java\jdk1.5.0\src.zip

© 2004 Pearson Addison-Wesley. All rights reserved

The Comparable Interface

• Any class can implement Comparable to provide a
mechanism for comparing objects of that type

if (obj1.compareTo(obj2) < 0)

System.out.println ("obj1 is less than obj2");

• The value returned from compareTo should be
negative is obj1 is less that obj2, 0 if they are
equal, and positive if obj1 is greater than obj2

• When a programmer designs a class that
implements the Comparable interface, it should
follow this intent

© 2004 Pearson Addison-Wesley. All rights reserved

The Comparable Interface

• It's up to the programmer to determine what
makes one object less than another

• For example, you may define the compareTo
method of an Employee class to order employees
by name (alphabetically) or by employee number

• The implementation of the method can be as
straightforward or as complex as needed for the
situation

© 2004 Pearson Addison-Wesley. All rights reserved

The Iterator Interface

• As we discussed in Chapter 5, an iterator is an
object that provides a means of processing a
collection of objects one at a time

• An iterator is created formally by implementing the
Iterator interface, which contains three methods

• The hasNext method returns a boolean result –
true if there are items left to process

• The next method returns the next object in the
iteration

• The remove method removes the object most
recently returned by the next method

© 2004 Pearson Addison-Wesley. All rights reserved

The Iterator Interface

• By implementing the Iterator interface, a class
formally establishes that objects of that type are
iterators

• The programmer must decide how best to
implement the iterator functions

• Once established, the for-each version of the for
loop can be used to process the items in the
iterator

4

© 2004 Pearson Addison-Wesley. All rights reserved

Interfaces

• You could write a class that implements certain
methods (such as compareTo) without formally
implementing the interface (Comparable)

• However, formally establishing the relationship
between a class and an interface allows Java to
deal with an object in certain ways

• Interfaces are a key aspect of object-oriented
design in Java

• We discuss this idea further in Chapter 9

© 2004 Pearson Addison-Wesley. All rights reserved

Interface Example:

Sortable.java
SortableIntArray.java

SortableStrigArray.java
SortingTest.java

Chapter 6

Section 6.6

© 2004 Pearson Addison-Wesley. All rights reserved

Enumerated Types
(read Section 6.6 on your own)

Chapter 6

Section 6.7

© 2004 Pearson Addison-Wesley. All rights reserved

Method Design

• As we've discussed, high-level design issues
include:

� identifying primary classes and objects

� assigning primary responsibilities

• After establishing high-level design issues, its
important to address low-level issues such as the
design of key methods

• For some methods, careful planning is needed to
make sure they contribute to an efficient and
elegant system design

5

© 2004 Pearson Addison-Wesley. All rights reserved

Method Design

• An algorithm is a step-by-step process for solving
a problem

• Examples: a recipe, travel directions

• Every method implements an algorithm that
determines how the method accomplishes its
goals

• An algorithm may be expressed in pseudocode, a
mixture of code statements and English that
communicate the steps to take

© 2004 Pearson Addison-Wesley. All rights reserved

Method Decomposition

• A method should be relatively small, so that it can
be understood as a single entity

• A potentially large method should be decomposed
into several smaller methods as needed for clarity

• A public service method of an object may call one
or more private support methods to help it
accomplish its goal

• Support methods might call other support
methods if appropriate

© 2004 Pearson Addison-Wesley. All rights reserved

Method Decomposition

• Let's look at an example that requires method
decomposition – translating English into Pig Latin

• Pig Latin is a language in which each word is
modified by moving the initial sound of the word to
the end and adding "ay"

• Words that begin with vowels have the "yay"
sound added on the end

book ookbay table abletay

item itemyay chair airchay

© 2004 Pearson Addison-Wesley. All rights reserved

Method Decomposition
• The primary objective (translating a sentence) is

too complicated for one method to accomplish

• Therefore we look for natural ways to decompose
the solution into pieces

• Translating a sentence can be decomposed into
the process of translating each word

• The process of translating a word can be
separated into translating words that:

� begin with vowels
� begin with consonant blends (sh, cr, th, etc.)
� begin with single consonants

© 2004 Pearson Addison-Wesley. All rights reserved

Method Decomposition

• See PigLatin.java (page 320)
• See PigLatinTranslator.java (page 323)

• In a UML class diagram, the visibility of a variabl e
or method can be shown using special characters

• Public members are preceded by a plus sign

• Private members are preceded by a minus sign

© 2004 Pearson Addison-Wesley. All rights reserved

Class Diagram for Pig Latin

PigLatin

+ main (args : String[]) : void

+ translate (sentence : String) : String
- translateWord (word : String) : String
- beginsWithVowel (word : String) : boolean
- beginsWithBlend (word : String) : boolean

PigLatinTranslator

6

Chapter 6

Section 6.8

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overloading

• Method overloading is the process of giving a
single method name multiple definitions

• If a method is overloaded, the method name is not
sufficient to determine which method is being
called

• The signature of each overloaded method must be
unique

• The signature includes the number, type, and
order of the parameters

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overloading

• The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x)
{

return x + .375;
}

float tryMe(int x, float y)
{

return x*y;
}

result = tryMe(25, 4.32)

Invocation

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overloading

• The println method is overloaded:

println (String s)

println (int i)

println (double d)

and so on...

• The following lines invoke different versions of th e
println method:

System.out.println ("The total is:");

System.out.println (total);

© 2004 Pearson Addison-Wesley. All rights reserved

Overloading Methods

• The return type of the method is not part of the
signature

• That is, overloaded methods cannot differ only by
their return type

• Constructors can be overloaded

• Overloaded constructors provide multiple ways to
initialize a new object

Chapter 6

Section 6.9

7

© 2004 Pearson Addison-Wesley. All rights reserved

Testing
(read Section 6.9 on your own)

© 2004 Pearson Addison-Wesley. All rights reserved

Testing

• Testing can mean many different things

• It certainly includes running a completed program
with various inputs

• It also includes any evaluation performed by
human or computer to assess quality

• Some evaluations should occur before coding
even begins

• The earlier we find an problem, the easier and
cheaper it is to fix

© 2004 Pearson Addison-Wesley. All rights reserved

Testing

• The goal of testing is to find errors

• As we find and fix errors, we raise our confidence
that a program will perform as intended

• We can never really be sure that all errors have
been eliminated

• So when do we stop testing?

� Conceptual answer: Never

� Snide answer: When we run out of time

� Better answer: When we are willing to risk that an
undiscovered error still exists

© 2004 Pearson Addison-Wesley. All rights reserved

Reviews

• A review is a meeting in which several people
examine a design document or section of code

• It is a common and effective form of human-based
testing

• Presenting a design or code to others:

� makes us think more carefully about it

� provides an outside perspective

• Reviews are sometimes called inspections or
walkthroughs

© 2004 Pearson Addison-Wesley. All rights reserved

Test Cases

• A test case is a set of input and user actions,
coupled with the expected results

• Often test cases are organized formally into test
suites which are stored and reused as needed

• For medium and large systems, testing must be a
carefully managed process

• Many organizations have a separate Quality
Assurance (QA) department to lead testing efforts

© 2004 Pearson Addison-Wesley. All rights reserved

Defect and Regression Testing

• Defect testing is the execution of test cases to
uncover errors

• The act of fixing an error may introduce new errors

• After fixing a set of errors we should perform
regression testing – running previous test suites
to ensure new errors haven't been introduced

• It is not possible to create test cases for all
possible input and user actions

• Therefore we should design tests to maximize
their ability to find problems

8

© 2004 Pearson Addison-Wesley. All rights reserved

Black-Box Testing

• In black-box testing, test cases are developed
without considering the internal logic

• They are based on the input and expected output

• Input can be organized into equivalence categories

• Two input values in the same equivalence
category would produce similar results

• Therefore a good test suite will cover all
equivalence categories and focus on the
boundaries between categories

© 2004 Pearson Addison-Wesley. All rights reserved

White-Box Testing

• White-box testing focuses on the internal structure
of the code

• The goal is to ensure that every path through the
code is tested

• Paths through the code are governed by any
conditional or looping statements in a program

• A good testing effort will include both black-box
and white-box tests

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

