
1

© 2004 Pearson Addison-Wesley. All rights reserved

November 13, 2006

Inheritance
(part 2)

ComS 207: Programming I (in Java)
Iowa State University, FALL 2006
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Quick Review of Last Lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Parameter Passing (primitive types)

• The act of passing an argument takes a copy of a
value and stores it in a local variable acessible
only to the method which is being called.

num1 38Before:

void myMethod(int num2)
{

num2 =50;

}

{
int num1=38;

myMethod(num1);

}

num1 38After:

num2 38Before:

num2 50After:

© 2004 Pearson Addison-Wesley. All rights reserved

Objects and Reference Variables

acct1 72354acctNumber

102.56balance

name “Ted Murphy”

acct2 69713acctNumber

40.00balance

name “Jane Smith”

© 2004 Pearson Addison-Wesley. All rights reserved

Parameter Passing (objects)
• Objects (in this case arrays) are also passed by

value. In this case, however, the value is the
address of the object pointed to by the reference
variable.

void myMethod(int[] b)
{

b[0]+=5;

}

{
int[] a={5, 7};

myMethod(a);

}

aBefore: 5
7

aAfter: 10
7

bBefore: 5
7

bAfter: 10
7

© 2004 Pearson Addison-Wesley. All rights reserved

In the previous example there is only
one array and two references to it.

a 5
7

b

2

© 2004 Pearson Addison-Wesley. All rights reserved

The array can be modified through
either reference.

a 10
7

b

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overloading

• The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x)
{

return x + .375;
}

float tryMe(int x, float y)
{

return x*y;
}

result = tryMe(25, 4.32)

Invocation

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overloading

• The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x)
{

return x + .375;
}

float tryMe(int x, float y)
{

return x*y;
}

[signature 1] tryMe: int

[signature 2] tryMe: int, float

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overloading

• The println method is overloaded:

println (String s)

println (int i)

println (double d)

and so on...

• The following lines invoke different versions of th e
println method:

System.out.println ("The total is:");

System.out.println (total);

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance

• Inheritance is a fundamental object-oriented
design technique used to create and organize
reusable classes

• Here is a quick analogy

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance

3

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance

© 2004 Pearson Addison-Wesley. All rights reserved

What can be inherited in Java?

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance

In class hierarchies the
Inheritance arrow usually
points up instead of down.

Chapter 8

Sections 8.1 & 8.2

4

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance

• Inheritance allows a software developer to derive a
new class from an existing one

• The existing class is called the parent class, or
superclass, or base class

• The derived class is called the child class or
subclass

• As the name implies, the child inherits
characteristics of the parent

• That is, the child class inherits the methods and
data defined by the parent class

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance
• Inheritance relationships are shown in a UML class

diagram using a solid arrow with an unfilled
triangular arrowhead pointing to the parent class

Vehicle

Car

• Proper inheritance creates an is-a relationship,
meaning the child is a more specific version of the
parent

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance

Class Hierarchy

Vehicle

Car

Objects

Vehicle v1 = new Vehicle();

Car c1 = new Car();
Car c2 = new Car();
Car c3 = new Car();

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance

• A programmer can tailor a derived class as needed
by adding new variables or methods, or by
modifying the inherited ones

• Software reuse is a fundamental benefit of
inheritance

• By using existing software components to create
new ones, we capitalize on all the effort that went
into the design, implementation, and testing of the
existing software

© 2004 Pearson Addison-Wesley. All rights reserved

Deriving Subclasses

• In Java, we use the reserved word extends to
establish an inheritance relationship

class Car extends Vehicle

{

// class contents

}

© 2004 Pearson Addison-Wesley. All rights reserved

Book & Dictionary Example

• See Words.java (page 440)
• See Book.java (page 441)
• See Dictionary.java (page 442)

5

© 2004 Pearson Addison-Wesley. All rights reserved

Class Diagram for Words

Book

pages : int

+ pageMessage() : void

Dictionary

- definitions : int

+ definitionMessage() : void

Words

+ main (args : String[]) : void

© 2004 Pearson Addison-Wesley. All rights reserved

public class Book

{
protected int pages = 1500;

public void setPages (int numPages)
{

pages = numPages;
}

public int getPages ()
{

return pages;
}

}

© 2004 Pearson Addison-Wesley. All rights reserved

public class Dictionary extends Book

{
private int definitions = 52500;

public double computeRatio ()
{

return definitions/pages;
}

public void setDefinitions (int numDefinitions)
{

definitions = numDefinitions;
}

public int getDefinitions ()
{

return definitions;
}

}
© 2004 Pearson Addison-Wesley. All rights reserved

public class Dictionary extends Book

{
private int definitions = 52500;

public double computeRatio ()
{ return definitions/pages; }

public void setDefinitions (int numDefinitions)
{ definitions = numDefinitions; }

public int getDefinitions ()
{ return definitions; }

}

© 2004 Pearson Addison-Wesley. All rights reserved

public class Dictionary extends Book

{
private int definitions = 52500;
protected int pages = 1500;

public void setPages (int numPages)
{ pages = numPages; }

public int getPages ()
{ return pages; }

public double computeRatio ()
{ return definitions/pages; }

public void setDefinitions (int numDefinitions)
{ definitions = numDefinitions; }

public int getDefinitions ()
{ return definitions; }

}

INHERITED

© 2004 Pearson Addison-Wesley. All rights reserved

The protected Modifier

• Visibility modifiers affect the way that class
members can be used in a child class

• Variables and methods declared with private
visibility cannot be referenced by name in a child
class

• They can be referenced in the child class if they
are declared with public visibility -- but public
variables violate the principle of encapsulation

• There is a third visibility modifier that helps in
inheritance situations: protected

6

© 2004 Pearson Addison-Wesley. All rights reserved

The protected Modifier
• The protected modifier allows a child class to

reference a variable or method directly in the chil d
class

• It provides more encapsulation than public
visibility, but is not as tightly encapsulated as
private visibility

• A protected variable is visible to any class in the
same package as the parent class

• The details of all Java modifiers are discussed in
Appendix E

• Protected variables and methods can be shown
with a # symbol preceding them in UML diagrams

© 2004 Pearson Addison-Wesley. All rights reserved

Appendix E

© 2004 Pearson Addison-Wesley. All rights reserved © 2004 Pearson Addison-Wesley. All rights reserved

The super Reference

• Constructors are not inherited, even though they
have public visibility

• Yet we often want to use the parent's constructor
to set up the "parent's part" of the object

• The super reference can be used to refer to the
parent class, and often is used to invoke the
parent's constructor

© 2004 Pearson Addison-Wesley. All rights reserved

The super Reference

• A child’s constructor is responsible for calling th e
parent’s constructor

• The first line of a child’s constructor should use
the super reference to call the parent’s
constructor

• The super reference can also be used to reference
other variables and methods defined in the
parent’s class

© 2004 Pearson Addison-Wesley. All rights reserved

this

7

© 2004 Pearson Addison-Wesley. All rights reserved

this

super

© 2004 Pearson Addison-Wesley. All rights reserved

this

super

this

super

© 2004 Pearson Addison-Wesley. All rights reserved

this

super

this

this

super

super

© 2004 Pearson Addison-Wesley. All rights reserved

Modified Book Example

• See Words2.java (page 445)
• See Book2.java (page 446)
• See Dictionary2.java (page 447)

© 2004 Pearson Addison-Wesley. All rights reserved

Multiple Inheritance

Car

PickupTruck

Truck

(not allowed in Java)

© 2004 Pearson Addison-Wesley. All rights reserved

Multiple Inheritance

• Java supports single inheritance, meaning that a
derived class can have only one parent class

• Multiple inheritance allows a class to be derived
from two or more classes, inheriting the members
of all parents

• Collisions, such as the same variable name in two
parents, have to be resolved

• Java does not support multiple inheritance

• In most cases, the use of interfaces gives us
aspects of multiple inheritance without the
overhead

8

© 2004 Pearson Addison-Wesley. All rights reserved

Analogy

© 2004 Pearson Addison-Wesley. All rights reserved

This example shows how multiple
inheritance can be faked in java

[http://www.vsj.co.uk/pix/articleimages/may05/javathread3.jpg]

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

