
1

© 2004 Pearson Addison-Wesley. All rights reserved

November 15, 2006

Overriding Methods &
Class Hierarchies

ComS 207: Programming I (in Java)
Iowa State University, FALL 2006
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Quick Review of Last Lecture

© 2004 Pearson Addison-Wesley. All rights reserved

The protected Modifier

• Visibility modifiers affect the way that class
members can be used in a child class

• Variables and methods declared with private
visibility cannot be referenced by name in a child
class

• They can be referenced in the child class if they
are declared with public visibility -- but public
variables violate the principle of encapsulation

• There is a third visibility modifier that helps in
inheritance situations: protected

© 2004 Pearson Addison-Wesley. All rights reserved

The protected Modifier
• The protected modifier allows a child class to

reference a variable or method directly in the chil d
class

• It provides more encapsulation than public
visibility, but is not as tightly encapsulated as
private visibility

• A protected variable is visible to any class in the
same package as the parent class

• The details of all Java modifiers are discussed in
Appendix E

• Protected variables and methods can be shown
with a # symbol preceding them in UML diagrams

© 2004 Pearson Addison-Wesley. All rights reserved

Appendix E

© 2004 Pearson Addison-Wesley. All rights reserved

2

© 2004 Pearson Addison-Wesley. All rights reserved

The super Reference

• Constructors are not inherited, even though they
have public visibility

• Yet we often want to use the parent's constructor
to set up the "parent's part" of the object

• The super reference can be used to refer to the
parent class, and often is used to invoke the
parent's constructor

© 2004 Pearson Addison-Wesley. All rights reserved

The super Reference

• A child’s constructor is responsible for calling th e
parent’s constructor

• The first line of a child’s constructor should use
the super reference to call the parent’s
constructor

• The super reference can also be used to reference
other variables and methods defined in the
parent’s class

© 2004 Pearson Addison-Wesley. All rights reserved

this

© 2004 Pearson Addison-Wesley. All rights reserved

this

super

© 2004 Pearson Addison-Wesley. All rights reserved

this

super

this

super

© 2004 Pearson Addison-Wesley. All rights reserved

this

super

this

this

super

super

3

© 2004 Pearson Addison-Wesley. All rights reserved

Modified Book Example

• See Words2.java (page 445)
• See Book2.java (page 446)
• See Dictionary2.java (page 447)

Chapter 8

Sections 8.1 & 8.2

© 2004 Pearson Addison-Wesley. All rights reserved

Overriding Methods

• A child class can override the definition of an
inherited method in favor of its own

• The new method must have the same signature as
the parent's method, but can have a different body

• The type of the object executing the method
determines which version of the method is
invoked

© 2004 Pearson Addison-Wesley. All rights reserved

Overriding

• A method in the parent class can be invoked
explicitly using the super reference

• If a method is declared with the final modifier, it
cannot be overridden

• The concept of overriding can be applied to data
and is called shadowing variables

• Shadowing variables should be avoided because it
tends to cause unnecessarily confusing code

© 2004 Pearson Addison-Wesley. All rights reserved

Overloading vs. Overriding?

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overloading

• The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x)
{

return x + .375;
}

float tryMe(int x, float y)
{

return x*y;
}

[signature 1] tryMe: int

[signature 2] tryMe: int, float

4

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overriding
public class Parent
{

public float tryMe(int x)
{
return x + .375;

}
}

Same Signatures

public class Child extends Parent
{

public float tryMe(int x)
{
return x*x;

}
}

Different
Method Bodies

© 2004 Pearson Addison-Wesley. All rights reserved

Overloading vs. Overriding

• Overloading deals with multiple methods with the
same name in the same class, but with different
signatures

• Overriding deals with two methods, one in a parent
class and one in a child class, that have the same
signature

© 2004 Pearson Addison-Wesley. All rights reserved

Overloading vs. Overriding

• Overloading lets you define a similar operation in
different ways for different parameters

• Overriding lets you define a similar operation in
different ways for different object types

© 2004 Pearson Addison-Wesley. All rights reserved

Overriding Example

• See Messages.java (page 450)
• See Thought.java (page 451)
• See Advice.java (page 452)

Chapter 8

Section 8.3

© 2004 Pearson Addison-Wesley. All rights reserved

Class Hierarchies

• A child class of one parent can be the parent of
another child, forming a class hierarchy

Business

KMart Macys

ServiceBusiness

Kinkos

RetailBusiness

5

© 2004 Pearson Addison-Wesley. All rights reserved
[http://cas.bellarmine.edu/tietjen/images/Mammal_order_tree.jpg]

© 2004 Pearson Addison-Wesley. All rights reserved

Animals Class Hierarchy

© 2004 Pearson Addison-Wesley. All rights reserved

Class Hierarchies

• Two children of the same parent are called siblings

• Common features should be put as high in the
hierarchy as is reasonable

• An inherited member is passed continually down
the line

• Therefore, a child class inherits from all its
ancestor classes

• There is no single class hierarchy that is
appropriate for all situations

© 2004 Pearson Addison-Wesley. All rights reserved

Employee
Class
Hierarchy

© 2004 Pearson Addison-Wesley. All rights reserved

The Object Class

• A class called Object is defined in the java.lang
package of the Java standard class library

• All classes are derived from the Object class

• If a class is not explicitly defined to be the chil d of
an existing class, it is assumed to be the child of
the Object class

• Therefore, the Object class is the ultimate root of
all class hierarchies

© 2004 Pearson Addison-Wesley. All rights reserved

The Object Class

• The Object class contains a few useful methods,
which are inherited by all classes

• For example, the toString method is defined in
the Object class

• Every time we define the toString method, we
are actually overriding an inherited definition

• The toString method in the Object class is
defined to return a string that contains the name o f
the object’s class along with some other
information

6

© 2004 Pearson Addison-Wesley. All rights reserved

Object – the mother of all objects in Java

© 2004 Pearson Addison-Wesley. All rights reserved

Object.java

• In fact, Object has more methods as can be seen
from the source file.

• java/lang/Object.java

© 2004 Pearson Addison-Wesley. All rights reserved

The Object Class

• The equals method of the Object class returns
true if two references are aliases

• We can override equals in any class to define
equality in some more appropriate way

• As we've seen, the String class defines the
equals method to return true if two String
objects contain the same characters

• The designers of the String class have
overridden the equals method inherited from
Object in favor of a more useful version

© 2004 Pearson Addison-Wesley. All rights reserved

AWT Class
Hierarchy

[http://www.scism.sbu.ac.uk/jfl/jibook/ch2/ch22.html]

© 2004 Pearson Addison-Wesley. All rights reserved

Exceptions
Class
Hierarchy

© 2004 Pearson Addison-Wesley. All rights reserved
[http://www.holtsoft.com/java/resources/inherit_tutorial/Inheritance/methods.jpg]

7

© 2004 Pearson Addison-Wesley. All rights reserved

Abstract Classes

• An abstract class is a placeholder in a class
hierarchy that represents a generic concept

• An abstract class cannot be instantiated

• We use the modifier abstract on the class
header to declare a class as abstract:

public abstract class Product

{

// contents

}

© 2004 Pearson Addison-Wesley. All rights reserved

Abstract Classes
• An abstract class often contains abstract methods

with no definitions (like an interface)

• Unlike an interface, the abstract modifier must be
applied to each abstract method

• Also, an abstract class typically contains non-
abstract methods with full definitions

• A class declared as abstract does not have to
contain abstract methods -- simply declaring it as
abstract makes it so

© 2004 Pearson Addison-Wesley. All rights reserved

Abstract Classes

• The child of an abstract class must override the
abstract methods of the parent, or it too will be
considered abstract

• An abstract method cannot be defined as final or
static

• The use of abstract classes is an important
element of software design – it allows us to
establish common elements in a hierarchy that are
too generic to instantiate

© 2004 Pearson Addison-Wesley. All rights reserved

Interface Hierarchies
• Inheritance can be applied to interfaces as well as

classes

• That is, one interface can be derived from another
interface

• The child interface inherits all abstract methods o f
the parent

• A class implementing the child interface must
define all methods from both the ancestor and
child interfaces

• Note that class hierarchies and interface
hierarchies are distinct (they do not overlap)

© 2004 Pearson Addison-Wesley. All rights reserved

This example shows how multiple
inheritance can be faked in java

[http://www.vsj.co.uk/pix/articleimages/may05/javathread3.jpg]

Chapter 8

Section 8.4

8

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Revisited

• It's important to understand one subtle issue
related to inheritance and visibility

• All variables and methods of a parent class, even
private members, are inherited by its children

• As we've mentioned, private members cannot be
referenced by name in the child class

• However, private members inherited by child
classes exist and can be referenced indirectly

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Revisited

• Because the parent can refer to the private
member, the child can reference it indirectly using
its parent's methods

• The super reference can be used to refer to the
parent class, even if no object of the parent exist s

© 2004 Pearson Addison-Wesley. All rights reserved

Example

• See FoodAnalyzer.java (page 459)
• See FoodItem.java (page 460)
• See Pizza.java (page 461)

© 2004 Pearson Addison-Wesley. All rights reserved

You can use jGrasp to draw
diagram like this one

Chapter 8

Section 8.5

© 2004 Pearson Addison-Wesley. All rights reserved

Designing for Inheritance

• As we've discussed, taking the time to create a
good software design reaps long-term benefits

• Inheritance issues are an important part of an
object-oriented design

• Properly designed inheritance relationships can
contribute greatly to the elegance, maintainability ,
and reuse of the software

• Let's summarize some of the issues regarding
inheritance that relate to a good software design

9

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance Design Issues

• Every derivation should be an is-a relationship

• Think about the potential future of a class
hierarchy, and design classes to be reusable and
flexible

• Find common characteristics of classes and push
them as high in the class hierarchy as appropriate

• Override methods as appropriate to tailor or
change the functionality of a child

• Add new variables to children, but don't redefine
(shadow) inherited variables

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance Design Issues

• Allow each class to manage its own data; use the
super reference to invoke the parent's constructor
to set up its data

• Even if there are no current uses for them,
override general methods such as toString and
equals with appropriate definitions

• Use abstract classes to represent general
concepts that lower classes have in common

• Use visibility modifiers carefully to provide neede d
access without violating encapsulation

© 2004 Pearson Addison-Wesley. All rights reserved

Restricting Inheritance

• The final modifier can be used to curtail
inheritance

• If the final modifier is applied to a method, then
that method cannot be overridden in any
descendent classes

• If the final modifier is applied to an entire class,
then that class cannot be used to derive any
children at all

� Thus, an abstract class cannot be declared as final

• These are key design decisions, establishing that
a method or class should be used as is

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

