Overriding Methods &
Class Hierarchies

November 15, 2006

ComsS 207: Programming | (in Java)
lowa State University, FALL 2006
Instructor: Alexander Stoytchev

2004 Pearson Addison:

Quick Review of Last Lecture

© 2004 Pears

Addison-Wesley. Allrights reserved

The protected Modifier

« Visibility modifiers affect the way that class
members can be used in a child class

» Variables and methods declared with private
visibility cannot be referenced by name in a child
class

» They can be referenced in the child class if they
are declared with public visibility -- but public
variables violate the principle of encapsulation

» There is a third visibility modifier that helps in
inheritance situations: prot ect ed

©2004 Pearson Addison-Wesley. Allrights reserved

The protected Modifier

* The pr ot ect ed modifier allows a child class to
reference a variable or method directly in the chil
class

« It provides more encapsulation than public
visibility, but is not as tightly encapsulated as
private visibility

» A protected variable is visible to any class in the
same package as the parent class

* The details of all Java modifiers are discussed in
Appendix E

» Protected variables and methods can be shown
with a # symbol preceding them in UML diagrams

© 2004 Pearson Addison-Wesley. Al rights reserved

d

Appendix E

Modifier Classes and Interfaces Methods and variables

fault (no modlﬁa;) Visible in its package. Visible to-any class In the same package as its class.

i
| public Visible anywhere. Visible anywhere.
y
| protected N/A Visible by any class in the same package as its class.
private Visible to the enclosing Not visible by any other class.
class only

arson Addison-Wesley. Al rights reserved

Modifier Class Interface Method Varlable:
abstract | The class may con- | All interfaces are | No method body is N/A
tain abstract meth- | inherently abstract. | defined. The method
ods, Itcannotbe | The modifier is requires implementation
instantiated. optional. when inherited
final | The class cannot be | N/A The method cannot be The variable is a constant,
used to drive new overridden. whose value cannot be
classes. changed once initially set.
native | N/A N/A No method body is neces- | N/A

sary since implementation
is In another language.

static | N/A N/A Defines a class method. It | Dafines a class variable. It
does not require an instan- | does not require an instan-
tiated object 1o be invoked. | tiated object to be refer-
It cannot reference nan- enced. It is shared (com-
static methods or variables. | mon memory space) among
Itis implicity final all instances of the class.
synchro- | N/A n/A The execution of the N/A
nized method is mutually exclu-
sive among all threads.
transient | n/A N/A N/A The variable will not
be serialized.
volatile | n/n N/A N/A The variable is changed

asynehronously. The
compiler should not
perform optimizations
on it

© 2004 Pearson Addison-Wesley. Al rights reserved

The super Reference by ' The super Reference

« Constructors are not inherited, even though they < Achild’s constructor is responsible for calling th e
have public visibility - parent’s constructor

« The first line of a child’s constructor should use
the super reference to call the parent’s

» Yet we often want to use the parent's constructor constructor

to set up the "parent's part" of the object
« The super reference can also be used to reference
other variables and methods defined in the

« The super reference can be used to refer to the = parent's class
parent class, and often is used to invoke the :
parent's constructor

© 2004 Pearson Addison-Wesley. Al rights reserved A ©2004 Pearson Addison-Wesley. Allrights reserved

super

this ' this

© 2004 Pearson Addison-Wesley. All rights reserved 3 © 2004 Pearson Addison-Wesley. Al rights reserved

super super

this this

© 2004 Pearson Addison-Wesley. Al rights reserved ©2004 Pearson Addison-Wesley. Al rights reserved

Modified Book Example

¢ See \Wrds2. | ava (page 445)
* See Book2. | ava (page 446)
* SeeDictionary?2.java (page 447)

©2004 Pearson Addison-Wesley. All rights reserved

Overriding Methods
¢ Achild class can override the definition of an

inherited method in favor of its own

¢ The new method must have the same signature as
the parent's method, but can have a different body

* The type of the object executing the method
determines which version of the method is
invoked

© 2004 Pearson Addison-Wesley. All rights reserved

Overloading vs. Overriding?

© 2004 Pearson Addison-Wesley. All rights reserved

Chapter 8

2B © 2005 Pearsan Addison-Wesiey. Al rights reserved.

¥

Overriding

* A method in the parent class can be invoked
explicitly using the super reference

« If a method is declared with the f i nal modifier, it
cannot be overridden

* The concept of overriding can be applied to data
and is called shadowing variables

« Shadowing variables should be avoided because it
tends to cause unnecessarily confusing code

©2004 Pearson Addison-Wesley. Al rights reserved

Method Overloading

* The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x) [signature 1] tryMe: int

return x + .375;

}
float tryMe(int x, fioat y)[signature2] tryMe: int, floai
{

return x*y;

}

©2004 Pearson Addison-Wesley. Al rights reserved

Method Overriding

public class Parent

public float trywe(int x) Same Signatures

Different
. Method Bodies|

|

©2004 Pearson Addison-Wesley. All rights reserved

Overloading vs. Overriding

¢ Overloading deals with multiple methods with the
same name in the same class, but with different
signatures

« Overriding deals with two methods, one in a parent
class and one in a child class, that have the same
signature

©2004 Pearson Addison-Wesley. Al rights reserved

Overloading vs. Overriding

* Overloading lets you define a similar operation in
different ways for different parameters

« Overriding lets you define a similar operation in
different ways for different object types

© 2004 Pearson Addison-Wesley. All rights reserved

Overriding Example

* See Messages. | ava (page 450)
» See Thought . | ava (page 451)
* See Advi ce. | ava (page 452)

©2004 Pearson Addison-Wesley. Al rights reserved

Chapter 8

© 2005 Pestson Addison-Wesley. Al ights reserved.

Class Hierarchies

« A child class of one parent can be the parent of
another child, forminga class hierarchy

RetailBusiness ServiceBusiness

| KMart | | Macys | | Kinkos |

©2004 Pearson Addison-Wesley. Al rights reserved

5,

: : .

(*\ Toothed Whales GO
Guinéa Pig,
y ?‘%mup
P
I\
Sairrel Gmup

;!r

Whalebone
” Whales \,-

/s
'\;7) PER\SSODACTYLS
CETACEAN: /)

”;)
3
ARTIO! ACTYLS =

P
P
LAGOM'ORPHS
&
S
x UNGULATES
s
PNMATES \35 / ¢ PANGOLIN
0 %——\ R)
INSECTIVORE V4 /»%
/ Y
i AARDVARK

EDENTATES
Figure 55. Diagrammat
(placental S
Primates,

family tree of the major orders (and some suborders) of cutherian
diagrams (Figs. 57-61) give in more detail the evolution of
nivores, and odd- and even-toed ungulates.

© 2004 Pearson Addison-Wesley. All rights re;

[htfp://cas.bellarmine.edu/tietjen/images/M ammal_order treejpg)|

Class Hierarchies

* Two children of the same parent are called siblings

« Common features should be put as high in the
hierarchy as is reasonable

* An inherited member is passed continually down
the line

« Therefore, a child class inherits from all its
ancestor classes

« There is no single class hierarchy that is
appropriate for all situations

© 2004 Pearson Addison-Wesley. Al rights reserved

The Object Class

e Aclass called Obj ect is defined inthe java.l ang
package of the Java standard class library

« All classes are derived from the Obj ect class

« If a class is not explicitly defined to be the chil d of
an existing class, it is assumed to be the child of
the Obj ect class

« Therefore, the Obj ect class is the ultimate root of
all class hierarchies

© 2004 Pearson Addison-Wesley. Al rights reserved

Animals Class Hierarchy

Animal
 —
Reptile Bird . Mammal
r Snake Lizard Parrot | Horse Bat
© 2004 Pearson Addison-Wesley. Al rights reserved
Employee

Class
Hierarchy

|+ main fags - Suingl ol

N7
Stattember
stat
name - Suing
et aenbet] (5, | #akdss Sivg
¥ onone - st
+ payday) o sy -core
pay) double
Py

Volunteer Employee

socialSecuriyumber - Sting

) o A BR3G doutle

T
—————

Executive Houry

- bonus : doudle — noursworked : int

. cBonus : doutle): void
+p2y) - double + Py - double
+ ToSiring) - trng

© 2004 Pearson Addison-Wesley. Al rights reserved

The Object Class

¢ The bj ect class contains a few useful methods,
which are inherited by all classes

« For example, the toString method is defined in
the Obj ect class

* Every time we define the t oSt ri ng method, we
are actually overriding an inherited definition

e The t oSt ri ng method inthe Obj ect classis
defined to return a string that contains the name o
the object’s class along with some other
information

©2004 Pearson Addison-Wesley. Al rights reserved

Object — the mother of all objects in Java

{ boolean equals (Object obj) |
| Returns true if this object is an alias of the specified object. E
{ String toString () H
| Returns a string representation of this object.

| Object clone ()
Creates and returns a copy of this object.

© 2004 Pearson Addison-Wesley. Allrights reserved

The Object Class

* The equal s method of the bj ect class returns
true if two references are aliases

* We can override equal s in any class to define
equality in some more appropriate way

* As we've seen, the String class defines the
equal s method to return true iftwo Stri ng
objects contain the same characters

* The designers of the Stri ng class have
overridden the equal s method inherited from
bj ect in favor of a more useful version

Exceptions Object
2
Class
. Throwable
Hierarchy
Error Exception
|
*’ RunTimeException
LinkageError
ThreadDeath

VirtualMachineError

— AWTEror

© 2004 Pearson Addison-Wesley. Al rights reserved

| Object.java

« In fact, Object has more methods as can be seen
from the source file.

« java/lang/Object.java

©2004 Pearson Addison-Wesley. Al rights reserved

AWT Class
Hierarchy

Checkbox
Growp

% Choice ‘

TPanel Applet ‘

Dialog

File
Daalog

Teat
Component

© 2004 Pearson Addison-Wesley. Al rights reserved

[hEp:I/vwvw.s:isn.sbu.ac.uk/'fl/' ibook/ch2/ch22.html

Ohject , , | has 11 methods we won't use but are - defined in
inherited by Vehicle and subelasses. that class

dra() e
Vehicle « o| 2ree() in that class

setVishle(boolean)
move(int mt) g et by
setbize(int, int) that class
setColoafColor)

Car , Boat, oo
g ® ol erase)
T % e e e e s, |setVishhiboolat)
movrelin int)
Lran) satSizalint, int)
Ferry.. ., L ey setCalox{Color)
setVishlaboolsax)
move(int,int)
setSiza(int, int)
setColor(Caloz)
SuperFerry [veu
* ., et
satVishla(boolesn]
movelint,int]
setSise(int, int)
satColor(Color)
‘movsFelativaint,int]

oo peasen AMSTH@:‘?}'\A’)W%W,&)M avalresources/inherit_tutorial/Inheritance/methods; pg

Abstract Classes

« An abstract class is a placeholder in a class
hierarchy that represents a generic concept

« An abstract class cannot be instantiated

* We use the modifier abstract on the class
header to declare a class as abstract:

public abstract class Product

{

/'l contents

© 2004 Pearson Addison-Wesley. Al rights reserved

Abstract Classes

* An abstract class often contains abstract methods
with no definitions (like an interface)

« Unlike an interface, the abst ract modifier must be
applied to each abstract method

« Also, an abstract class typically contains non-
abstract methods with full definitions

* Aclass declared as abstract does not have to
contain abstract methods -- simply declaring it as
abstract makes it so

©2004 Pearson Addison-Wesley. Al rights reserved

' Abstract Classes

¢ The child of an abstract class must override the
abstract methods of the parent, or it too will be
considered abstract

« An abstract method cannot be defined as fi nal or
static

* The use of abstract classes is an important
element of software design — it allows us to
establish common elements in a hierarchy that are
too generic to instantiate

© 2004 Pearson Addison-Wesley. Al rights reserved

Interface Hierarchies

« Inheritance can be applied to interfaces as well as
classes

¢ Thatis, one interface can be derived from another
interface

« The child interface inherits all abstract methods o
the parent

* A class implementing the child interface must
define all methods from both the ancestor and
child interfaces

« Note that class hierarchies and interface
hierarchies are distinct (they do not overlap)

© 2004 Pearson Addison-Wesley. Al rights reserved

f

This example shows how multiple
inheritance can be faked in java

© 2004 Pearson Addison-Wesley. Al rights i

ﬁh}://www.vsj -Co.uk/pix/articleimages/may05/javathread3,jpg

©2005 Pearson Addison-Wesley. Al rights reserved.

{ Visibility Revisited
« It's important to understand one subtle issue

related to inheritance and visibility

« All variables and methods of a parent class, even
private members, are inherited by its children

« As we've mentioned, private members cannot be
referenced by name in the child class

* However, private members inherited by child
classes exist and can be referenced indirectly

© 2004 Pearson Addison-Wesley. Al rights reserved

§ Visibility Revisited

« Because the parent can refer to the private
member, the child can reference it indirectly using
its parent's methods

* The super reference can be used to refer to the
parent class, even if no object of the parent exist

©2004 Pearson Addison-Wesley. Al rights reserved

Example

¢ See FoodAnal yzer. j ava (page 459)

* See Foodl t em j ava (page 460)
e SeePi zza. | ava (page 461)

© 2004 Pearson Addison-Wesley. Al rights reserved

You can use jGrasp to draw
diagram like this one

Foog/—\nalyzer Foodltem
{main}
Ty T
Pizza

|:| Project Class ———> Inheritance

----- > Other (reference, etc.)

© 2004 Pearson Addison-Wesley. Al rights reserved

Chapter 8

LEWIS & LOFTUS

© 2005 Peatson Addison-Wesley. Al righs reserves 4

Designing for Inheritance

* As we've discussed, taking the time to create a
good software design reaps long-term benefits

« Inheritance issues are an important part of an
object-oriented design

« Properly designed inheritance relationships can
contribute greatly to the elegance, maintainability
and reuse of the software

¢ Let's summarize some of the issues regarding
inheritance that relate to a good software design

©2004 Pearson Addison-Wesley. Al rights reserved

Inheritance Design Issues

« Every derivation should be an is-a relationship

« Think about the potential future of a class
hierarchy, and design classes to be reusable and
flexible

* Find common characteristics of classes and push
them as high in the class hierarchy as appropriate

« Override methods as appropriate to tailor or
change the functionality of a child

« Add new variables to children, but don't redefine
(shadow) inherited variables

2004 Pearson Addison-Wesley. Al righ

Inheritance Design Issues

« Allow each class to manage its own data; use the
super reference to invoke the parent's constructor
to set up its data

« Even if there are no current uses for them,
override general methods suchas toStringand
equal s with appropriate definitions

* Use abstract classes to represent general
concepts that lower classes have in common

« Use visibility modifiers carefully to provide neede
access without violating encapsulation

‘earson Addison-Wesley. Al rights reserved

d

Restricting Inheritance

« The final modifier can be used to curtail
inheritance

« Ifthe fi nal modifier is applied to a method, then
that method cannot be overridden in any
descendent classes

« Ifthe fi nal modifier is applied to an entire class,
then that class cannot be used to derive any
children at all

= Thus, an abstract class cannot be declared as final

* These are key design decisions, establishing that
a method or class should be used as is

©2004 Pearson Addison-Wesley. Allrights reserved

THE END

© 2004 Pearson Addison-Wi

esley. Al rights reserved

