
1

© 2004 Pearson Addison-Wesley. All rights reserved

November 27, 2006

Polymorphism

ComS 207: Programming I (in Java)
Iowa State University, FALL 2006
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Final Exam

• Time:
� Tuesday Dec 12 @ 7:00-9:00 p.m.

• Location:
� same as midterms, i.e., Hoover 2055.

© 2004 Pearson Addison-Wesley. All rights reserved

Quick Review of Last Lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overloading

• The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x)
{

return x + .375;
}

float tryMe(int x, float y)
{

return x*y;
}

[signature 1] tryMe: int

[signature 2] tryMe: int, float

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overriding
public class Parent
{

public float tryMe(int x)
{

return x + .375;
}

}

Same Signatures

public class Child extends Parent
{

public float tryMe(int x)
{

return x*x;
}

}

Different
Method Bodies

© 2004 Pearson Addison-Wesley. All rights reserved

Overriding Methods

• A child class can override the definition of an
inherited method in favor of its own

• The new method must have the same signature as
the parent's method, but can have a different body

• The type of the object executing the method
determines which version of the method is
invoked

2

© 2004 Pearson Addison-Wesley. All rights reserved

Overriding

• A method in the parent class can be invoked
explicitly using the super reference

• If a method is declared with the final modifier, it
cannot be overridden

• The concept of overriding can be applied to data
and is called shadowing variables

• Shadowing variables should be avoided because it
tends to cause unnecessarily confusing code

© 2004 Pearson Addison-Wesley. All rights reserved

Overloading vs. Overriding

• Overloading deals with multiple methods with the
same name in the same class, but with different
signatures

• Overriding deals with two methods, one in a parent
class and one in a child class, that have the same
signature

© 2004 Pearson Addison-Wesley. All rights reserved

Overloading vs. Overriding

• Overloading lets you define a similar operation in
different ways for different parameters

• Overriding lets you define a similar operation in
different ways for different object types

© 2004 Pearson Addison-Wesley. All rights reserved

Class Hierarchies

• A child class of one parent can be the parent of
another child, forming a class hierarchy

Business

KMart Macys

ServiceBusiness

Kinkos

RetailBusiness

© 2004 Pearson Addison-Wesley. All rights reserved

Class Hierarchies

• Two children of the same parent are called siblings

• Common features should be put as high in the
hierarchy as is reasonable

• An inherited member is passed continually down
the line

• Therefore, a child class inherits from all its
ancestor classes

• There is no single class hierarchy that is
appropriate for all situations

© 2004 Pearson Addison-Wesley. All rights reserved

Object – the mother of all objects in Java

3

© 2004 Pearson Addison-Wesley. All rights reserved

The Object Class

• The equals method of the Object class returns
true if two references are aliases

• We can override equals in any class to define
equality in some more appropriate way

• As we've seen, the String class defines the
equals method to return true if two String
objects contain the same characters

• The designers of the String class have
overridden the equals method inherited from
Object in favor of a more useful version

© 2004 Pearson Addison-Wesley. All rights reserved
[http://www.holtsoft.com/java/resources/inherit_tutorial/Inheritance/methods.jpg]

© 2004 Pearson Addison-Wesley. All rights reserved

Abstract Classes

• An abstract class is a placeholder in a class
hierarchy that represents a generic concept

• An abstract class cannot be instantiated

• We use the modifier abstract on the class
header to declare a class as abstract:

public abstract class Product

{

// contents

}

© 2004 Pearson Addison-Wesley. All rights reserved

public abstract class Animal
{

abstract void makeSound();
}

public class Cow extends Animal
{

public void makeSound()
{

System.out.println("Moo-Moo");
}

}

public class Dog extends Animal
{

public void makeSound()
{

System.out.println(“Wuf-Wuf");
}

}

public class Duck extends Animal
{

public void makeSound()
{

System.out.println(“Quack-Quack");
}

}

© 2004 Pearson Addison-Wesley. All rights reserved

Abstract Classes
• An abstract class often contains abstract methods

with no definitions (like an interface)

• Unlike an interface, the abstract modifier must be
applied to each abstract method

• Also, an abstract class typically contains non-
abstract methods with full definitions

• A class declared as abstract does not have to
contain abstract methods -- simply declaring it as
abstract makes it so

© 2004 Pearson Addison-Wesley. All rights reserved

Abstract Classes

• The child of an abstract class must override the
abstract methods of the parent, or it too will be
considered abstract

• An abstract method cannot be defined as final or
static

• The use of abstract classes is an important
element of software design – it allows us to
establish common elements in a hierarchy that are
too generic to instantiate

4

© 2004 Pearson Addison-Wesley. All rights reserved

Other Stuff From Chapter 8

© 2004 Pearson Addison-Wesley. All rights reserved

Interface Hierarchies
• Inheritance can be applied to interfaces as well as

classes

• That is, one interface can be derived from another
interface

• The child interface inherits all abstract methods o f
the parent

• A class implementing the child interface must
define all methods from both the ancestor and
child interfaces

• Note that class hierarchies and interface
hierarchies are distinct (they do not overlap)

© 2004 Pearson Addison-Wesley. All rights reserved

This example shows how multiple
inheritance can be faked in java

[http://www.vsj.co.uk/pix/articleimages/may05/javathread3.jpg]
© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Cartoon

[http://faculty.juniata.edu/kruse/cs2/vis.gif]

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Revisited

• It's important to understand one subtle issue
related to inheritance and visibility

• All variables and methods of a parent class, even
private members, are inherited by its children

• As we've mentioned, private members cannot be
referenced by name in the child class

• However, private members inherited by child
classes exist and can be referenced indirectly

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Revisited

• Because the parent can refer to the private
member, the child can reference it indirectly using
its parent's methods

• The super reference can be used to refer to the
parent class, even if no object of the parent exist s

5

Chapter 9

Section 9.1 & 9.2

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism

• Polymorphism is an object-oriented concept that
allows us to create versatile software designs

• Chapter 9 focuses on:

� defining polymorphism and its benefits
� using inheritance to create polymorphic references
� using interfaces to create polymorphic references
� using polymorphism to implement sorting and searchi ng

algorithms
� additional GUI components

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism in Nature

[http://www.blackwellpublishing.com/ridley/images/h_erato.jpg]
© 2004 Pearson Addison-Wesley. All rights reserved

Binding
• Consider the following method invocation:

obj.doIt();

• At some point, this invocation is bound to the
definition of the method that it invokes

• If this binding occurred at compile time, then that
line of code would call the same method every
time

• However, Java defers method binding until run
time -- this is called dynamic binding or late
binding

• Late binding provides flexibility in program design

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism

• The term polymorphism literally means "having
many forms"

• A polymorphic reference is a variable that can
refer to different types of objects at different
points in time

• The method invoked through a polymorphic
reference can change from one invocation to the
next

• All object references in Java are potentially
polymorphic

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism

• Suppose we create the following reference
variable:

Occupation job;

• Java allows this reference to point to an
Occupation object, or to any object of any
compatible type

• This compatibility can be established using
inheritance or using interfaces

• Careful use of polymorphic references can lead to
elegant, robust software designs

6

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism via Inheritance

© 2004 Pearson Addison-Wesley. All rights reserved

References and Inheritance

• An object reference can refer to an object of its
class, or to an object of any class related to it b y
inheritance

• For example, if the Holiday class is used to derive
a class called Christmas , then a Holiday reference
could be used to point to a Christmas object

Holiday day;
day = new Christmas();

Holiday

Christmas

© 2004 Pearson Addison-Wesley. All rights reserved

References and Inheritance

• Assigning a child object to a parent reference is
considered to be a widening conversion, and can
be performed by simple assignment

• Assigning a parent object to a child reference can
be done also, but it is considered a narrowing
conversion and must be done with a cast

• The widening conversion is the most useful

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism via Inheritance

• It is the type of the object being referenced, not the
reference type, that determines which method is
invoked

• Suppose the Holiday class has a method called
celebrate , and the Christmas class overrides it

• Now consider the following invocation:

day.celebrate();

• If day refers to a Holiday object, it invokes the
Holiday version of celebrate ; if it refers to a
Christmas object, it invokes the Christmas
version

© 2004 Pearson Addison-Wesley. All rights reserved

Example: Animals class hierarchy

• Animal.java

• Cow.java

• Duck.java

• Dog.java

• Farm.java

© 2004 Pearson Addison-Wesley. All rights reserved

You can use jGrasp to draw
diagram like this one

7

© 2004 Pearson Addison-Wesley. All rights reserved

public abstract class Animal
{

abstract void makeSound();
}

public class Cow extends Animal
{

public void makeSound()
{

System.out.println("Moo-Moo");
}

}

public class Dog extends Animal
{

public void makeSound()
{

System.out.println(“Wuf-Wuf");
}

}

public class Duck extends Animal
{

public void makeSound()
{

System.out.println(“Quack-Quack");
}

}

© 2004 Pearson Addison-Wesley. All rights reserved

public class Farm
{

public static void main(String[] args)
{

Cow c=new Cow();
Dog d=new Dog();
Duck k= new Duck();

c.makeSound();
d.makeSound();
k.makeSound();

}
}

Result:
Moo-Moo
Wuf-Wuf
Quack-Quack

© 2004 Pearson Addison-Wesley. All rights reserved

public class Farm2
{

public static void main(String[] args)
{

Animal[] a = new Animal[3];

a[0] = new Cow();
a[1] = new Dog();
a[2] = new Duck();

for(int i=0; i< a.length; i++)
a[i].makeSound();

}
}

Result:
Moo-Moo
Wuf-Wuf
Quack-Quack © 2004 Pearson Addison-Wesley. All rights reserved

public abstract class Animal
{

abstract void makeSound();
public void move()
{

System.out.println(“walk”);
}

}

public class Cow extends Animal
{

public void makeSound()
{

System.out.println("Moo-Moo");
}

}

public class Dog extends Animal
{

public void makeSound()
{

System.out.println(“Wuf-Wuf");
}

}

public class Duck extends Animal
{

public void makeSound()
{

System.out.println(“Quack-Quack");
}

}

Define a new method
which is not
abstract and is
inherited by all
children.

© 2004 Pearson Addison-Wesley. All rights reserved

public abstract class Animal
{

abstract void makeSound();
public void move()
{

System.out.println(“walk”);
}

}

public class Cow extends Animal
{

public void makeSound()
{

System.out.println("Moo-Moo");
}

}

public class Dog extends Animal
{

public void makeSound()
{

System.out.println(“Wuf-Wuf");
}

}

public class Duck extends Animal
{

public void makeSound() {
System.out.println(“Quack-Quack");

}
public void move() {

System.out.println(“fly”);
}

}

Override the move
method defined in
the Animal class.

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism via Inheritance

• Consider the following class hierarchy:

StaffMember

Executive Hourly

Volunteer Employee

8

© 2004 Pearson Addison-Wesley. All rights reserved

Employee
Class
Hierarchy

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism via Inheritance

• Now let's look at an example that pays a set of
diverse employees using a polymorphic method

• See Firm.java (page 486)
• See Staff.java (page 487)
• See StaffMember.java (page 489)
• See Volunteer.java (page 491)
• See Employee.java (page 492)
• See Executive.java (page 493)
• See Hourly.java (page 494)

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

