Final Exam

* Time:

Polymorphism = Tuesday Dec 12 @ 7:00-9:00 p.m.

November 27, 2006 .
e Location:

= same as midterms, i.e., Hoover 2055.

ComsS 207: Programming | (in Java)
lowa State University, FALL 2006
© 2004 Pearson Addison-Wesley. All rights reserved Instructor: Alexander Stoy{chev

©2004 Pearson Addison-Wesley. Al rights reserved

Method Overloading

« The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x) [signature 1] tryMe: int
Quick Review of Last Lecture U s a75;
}
float tryMe(int x, float y) [signature 2] tryMe: int, floa{
{
return x*y;
}

© 2004 Pearson Addison-Wesley. Al rights reserved © 2004 Pearson Addison-Wesley. Al rights reserved

Method Overriding

public class Parent

Overriding Methods

« Achild class can override the definition of an

public float tryMe(int x) Same Signatures inherited method in favor of its own
{
return x + .375;
}
} I * The new method must have the same signature as

the parent's method, but can have a different body

public class Child extends Parent

public float tryMe(int x) ¥ - The type of the object executing the method
{ — Different i determines which version of the method is
) retum x*x; Method Bodies| invoked

}

© 2004 Pearson Addison-Wesley. Al rights reserved ©2004 Pearson Addison-Wesley. Al rights reserved

Overriding

* A method in the parent class can be invoked
explicitly using the super reference

« |f a method is declared with the final maodifier, it
cannot be overridden

* The concept of overriding can be applied to data
and is called shadowing variables

* Shadowing variables should be avoided because it
tends to cause unnecessarily confusing code

© 2004 Pearson Addison-Wesley. Allrights reserved

| Overloading vs. Overriding

¢ Overloading deals with multiple methods with the
same name in the same class, but with different
signatures

« Overriding deals with two methods, one in a parent
class and one in a child class, that have the same
signature

©2004 Pearson Addison-Wesley. Al rights reserved

Overloading vs. Overriding

* Overloading lets you define a similar operation in
different ways for different parameters

« Overriding lets you define a similar operation in
different ways for different object types

© 2004 Pearson Addison-Wesley. Al rights reserved

Class Hierarchies

« A child class of one parent can be the parent of
another child, forming a class hierarchy

Business

l KMart] l Macys] l Kinkos]

© 2004 Pearson Addison-Wesley. Al rights reserved

Class Hierarchies

* Two children of the same parent are called siblings

« Common features should be put as high in the
hierarchy as is reasonable

* An inherited member is passed continually down
the line

* Therefore, a child class inherits from all its
ancestor classes

* There is no single class hierarchy that is
appropriate for all situations

> 2004 Pearson Addison-Wesley. Al rights reserved

Object — the mother of all objects in Java

‘ boolean equals (Cbject obj)
| Returns true if this object is an alias of the specified object. !

| SBtring toString ()
| Returns a string representation of this object.

| Object clomne ()
Creates and returns a copy of this object.

©2004 Pearson Addison-Wesley. Al rights reserved

The Object Class

e The equals method of the Object class returns
true if two references are aliases

* We can override equals in any class to define
equality in some more appropriate way

* Aswe've seen, the String class defines the
equals method to return true if two String
objects contain the same characters

« The designers of the String class have
overridden the equals method inherited from
Object in favor of a more useful version

2004 Pearson Addison:

Object ., [Tas 1L mathods v vort e bt are | gy defined in
incherited by Vehicle and subelasses that elass

draw()
Vehicle » o|=r2se()
setWisblefboolean)
mava(int,int] b ey
setSize(int, int) ki
setColor Color)
Car , Boat , _
n :)
o e oo 0o |setVishla(boolean)
mavalind int)
dvaw) setSizelint, int)
Ferry |ewer) setCalorColoy)
| setVishle(boolean)

move(int,int)
setSiza(int, int)
setCalorCalaz)
SuperFerry [T

. f

.

axisel)
*| setVisbletboolean
el int int]
setSime(int, int)
satColoaf Color)
moveRelativelint, int)

© 2004 Pearson Ad

" fhitp!iiwmab hoitsoft comjavalresourcesfinherit_tutorial/inheritance/methodsjpg] |

Abstract Classes

* An abstract class is a placeholder in a class
hierarchy that represents a generic concept

* An abstract class cannot be instantiated

* We use the modifier abstract on the class
header to declare a class as abstract:

public abstract class Product

{

/I contents

©2004 Pearson Addison-Wesley. Allrights reserved

public abstract class Animal

abstract void makeSound();

public class Cow extends Animal public class Dog extends Animal
{
public void makeSound() public void makeSound()
System.out.printin("Moo-Moo"); System.out.printin(“Wuf-Wuf");

}
}

public class Duck extends Animal
public void makeSound()

System.out.printin(“Quack-Quack");

}

© 2004 Pearson Addison-Wesley. Al rights reserved

Abstract Classes

« An abstract class often contains abstract methods
with no definitions (like an interface)

« Unlike an interface, the abstract modifier must be
applied to each abstract method

« Also, an abstract class typically contains non-
abstract methods with full definitions

* Aclass declared as abstract does not have to
contain abstract methods -- simply declaring it as
abstract makes it so

arson Addison-Wesley. Al rights reserved

Abstract Classes

* The child of an abstract class must override the
abstract methods of the parent, or it too will be
considered abstract

* An abstract method cannot be defined as final
static

* The use of abstract classes is an important
element of software design — it allows us to
establish common elements in a hierarchy that are
too generic to instantiate

© 2004 Pearson Addison-Wesley. Al rights reserved

or

Other Stuff From Chapter 8

2004 Pearson Addison-Wesley. Al righ

Interface Hierarchies

« Inheritance can be applied to interfaces as well as
classes

* That is, one interface can be derived from another
interface

« The child interface inherits all abstract methods o
the parent

« A class implementing the child interface must
define all methods from both the ancestor and
child interfaces

Note that class hierarchies and interface
hierarchies are distinct (they do not overlap)

© 2004 P

y. Al rights reserved

f

This example shows how multiple
inheritance can be faked in java

java.lang.Object

<<interface>>

java.lang.Thread

2004 Pearson Addison-Wesley. Al rights re: °t

java.lang.Runnable

<<extends>>
<<implements>>

Ht_tp://vwvw.vq' .co.uk/pix/articlei mﬁmaos/'ava:hreaﬁ.' pgj

Visibility Cartoon

Visibility Revisited

It's important to understand one subtle issue
related to inheritance and visibility

All variables and methods of a parent class, even
private members, are inherited by its children

As we've mentioned, private members cannot be
referenced by name in the child class

However, private members inherited by child
classes exist and can be referenced indirectly

2004 Pearson Addison-Wesley. Al rights reserved

http://faculty.juniata.edu/kruse/cs2/vis.gif]

Visibility Revisited

* Because the parent can refer to the private
member, the child can reference it indirectly using
its parent's methods

* The super reference can be used to refer to the
parent class, even if no object of the parent exist

© 2004 Pearson Addison-Wesley. Al rights reserved

S

RB © 2005 Pesrson Addisan-Wesley. Al rights reserved.

Polymorphism

« Polymorphism is an object-oriented concept that
allows us to create versatile software designs

« Chapter 9 focuses on:

defining polymorphism and its benefits
using inheritance to create polymorphic references
using interfaces to create polymorphic references

using polymorphism to implement sorting and searchi
algorithms

additional GUI components

©2004 Pearson Addison-Wesley. Al rights reserved

ng

Polymorphism in Nature

© 2004 Pearson Addison-Wesley. Al rights reserved

http://www.blackwellpublishing.comvridley/images'h_erato.jpg

Binding
« Consider the following method invocation:
obj.dolt();

« At some point, this invocationis bound to the
definition of the method that it invokes

« If this binding occurred at compile time, then that
line of code would call the same method every
time

* However, Java defers method binding until run
time -- this is called dynamic binding or late
binding

 Late binding provides flexibility in program design

© 2004 Pearson Addison-Wesley. Al rights reserved

Polymorphism

¢ The term polymorphism literally means "having
many forms"

* A polymorphic reference is a variable that can
refer to different types of objects at different
points in time

* The method invoked through a polymorphic
reference can change from one invocation to the
next

« All object references in Java are potentially
polymorphic

© 2004 Pearson Addison-Wesley. Al rights reserved

Polymorphism

« Suppose we create the following reference
variable:
Occupation job;

« Java allows this reference to point to an
Occupation object, or to any object of any

compatible type

« This compatibility can be established using
inheritance or using interfaces

« Careful use of polymorphic references can lead to
elegant, robust software designs

©2004 Pearson Addison-Wesley. Al rights reserved

Polymorphism via Inheritance

© 2004 Pearson Addison-Wesley. Allrights reserved

References and Inheritance

~ * An object reference can refer to an object of its

class, or to an object of any class related toitb y
inheritance

» For example, if the Holiday class is used to derive
aclass called Christmas , then a Holiday reference
could be used to pointtoa Christmas object

Holiday

A\ Holiday day;

day = new Christmas();

©2004 Pearson Addison-Wesley. Al rights reserved

References and Inheritance

« Assigning a child object to a parent reference is
considered to be a widening conversion, and can
be performed by simple assignment

« Assigning a parent object to a child reference can
be done also, but it is considered a narrowing
conversion and must be done with a cast

* The widening conversion is the most useful

© 2004 Pearson Addison-Wesley. Al rights reserved

Polymorphism via Inheritance

< ltis the type of the object being referenced, not the
reference type, that determines which method is
invoked

* Suppose the Holiday class has a method called
celebrate , and the Christmas class overrides it
« Now consider the following invocation:

day.celebrate();

« If day refersto a Holiday object, it invokes the
Holiday version of celebrate ; ifitreferstoa
Christmas object, it invokes the Christmas
version

© 2004 Pearson Addison-Wesley. Al rights reserved

Example: Animals class hierarchy

* Animal.java
* Cow.java
¢ Duck.java
* Dog.java

* Farm.java

2004 Pearson Addison-Wesley. Al rights reserved

You can use jGrasp to draw
diagram like this one

Animal Farm
{abstract}] {main}
2
[o 1 NG

I Cow [I Dog [I Duck I

[Proectolass ——> innentance
- - = -3 Other (reference, etc)

©2004 Pearson Addison-Wesley. Al rights reserved

public abstract class Animal

abstract void makeSound();

public class Cow extends Animal public class Dog extends Animal

public void makeSound() public void makeSound()
{

System.out.printin("Moo-Moo"); System.out.printin(“Wuf-Wuf");

public class Duck extends Animal
public void makeSound()

System.out.printin(*Quack-Quack");

}

© 2004 Pearson Addison-Wesley. Allrights reserved

public class Farm

{
{

Cow c=new Cow();
Dog d=new Dog();
Duck k= new Duck();

c.makeSound();

d.makeSound();
k.makeSound();

}

public static void main(String[] args)

public class Farm2

{

public static void main(String[] args)

{

Animal[] a = new Animal[3];
a[0] = new Cow();

a[1] = new Dog();

a[2] = new Duck();

for(int i=0; i< a.length; i++)
a[fi].makeSound();

}

public void makeSound()

System.out.printin("Moo-Moo");

Result:
Moo-Moo
Wuf-Wuf
Quack-Quack
public abstract class Animal
abstract void makeSound();
public void move() Define a new method
+—— which isnot
System.out.printin{*walk”); abstract and is
inherited by all
} children.
public class Cow extends Animal public class Dog extends Animal

public void makeSound()

System.out.printin(“Wuf-Wuf");

Result:
Moo-Moo
Wuf-Wuf
Quack-Quack

}

}

public class Duck extends Animal
public void makeSound()
System.out.printin(“Quack-Quack");

}

© 2004 Pearson Addison-Wesley. Al rights reserved

public abstract class Animal

abstract void makeSound();
public void move()

System.out.printin(“‘walk”);

ok

public class Cow extends Animal
public void makeSound()

System.out.printin("Moo-Moo");

public class Dog extends Animal
public void makeSound()
{

System.out.printin(“Wuf-Wuf");

} }

public class Duck extends Animal

public void makeSound() {
System.out.printin(“Quack-Quack");

public void move() { Overridethe move
System.out.printn{fiy); <«— ! method defined in

:§ ass.
2004 Pearson Addison-Wes| E} Alfrights reserved the Animal d

; Polymorphism via Inheritance
)

« Consider the following class hierarchy:

StaffMember

[Executive] l Hourly]

©2004 Pearson Addison-Wesley. Al rights reserved

Employee

I
i (s Stengl) v
e
Statember
statt
4 name :Sting
ot Severe] ¥ s :Sling
| KO & nore: e
|
|+ b voia

oSt : Strng
+pe) " dauble

Polymorphism via Inheritance

« Now let's look at an example that pays a set of
diverse employees using a polymorphic method

¢ See Firm.java (page 486)

* See Staff.java (page 487)

* See StaffMember. java (page 489)
¢ See Volunteer.java (page 491)

» See Employee.java (page 492)

¢ See Executive.java (page 493)

¢ See Hourly.java (page 494)

©2004 Pearson Addison-Wesley. Al rights reserved

© 2004 Pearson Addison-Wesley. Al rights reserved

y
—borus :coudle —oursworked - int
doute) : void + it vold
|+ pan: couvle +) couble
+ ToSiringg) - Stvng
© 2004 Pearson Addison-Wesley. Al rights reserved

