Polymorphism
(part 2)

November 29, 2006

ComsS 207: Programming | (in Java)
lowa State University, FALL 2006
Instructor: Alexander Stoytchev

2004 Pearson Addison-Wesley. Al righ

Quick Review of Last Lecture

esley. Al rights reserved

j Abstract Classes

* An abstract class is a placeholder in a class
hierarchy that represents a generic concept

* An abstract class cannot be instantiated

* We use the modifier abstract on the class
header to declare a class as abstract:

public abstract class Product

{

/I contents

© 2004 Pearson Addison-Wesley. Allrights reserved

Abstract Classes

« An abstract class often contains abstract methods
with no definitions (like an interface)

« Unlike an interface, the abstract modifier must be
applied to each abstract method

« Also, an abstract class typically contains non-
abstract methods with full definitions

« Aclass declared as abstract does not have to
contain abstract methods -- simply declaring it as
abstract makes it so

2004 Pearson Addison-Wesley

Allights reserved

Abstract Classes

« The child of an abstract class must override the
abstract methods of the parent, or it too will be
considered abstract

* An abstract method cannot be defined as final or
static

* The use of abstract classes is an important
element of software design — it allows us to
establish common elements in a hierarchy that are
too generic to instantiate

2004 Pearson Addison-Wesley. Al rights reserved

Polymorphism in Nature

© 2004 Pearson Addison-Wesley. Al rights reserved

[huE://www.bIackwelIEuhIishing.comlridlex{imageslkalo. pg]

Polymorphism

* The term polymorphism literally means "having
many forms"

* A polymorphic reference is a variable that can
refer to different types of objects at different

points in time Polymorphism via Inheritance

¢ The method invoked through a polymorphic
reference can change from one invocation to the
next

« All object references in Java are potentially
polymorphic

© 2004 Pearson Addison-Wesley. Allrights reserved ©2004 Pearson Addison-Wesley. Al rights reserved

References and Inheritance Binding
« Consider the following method invocation:
obj.dolt();

« An object reference can refer to an object of its
class, or to an object of any class related toitb y
inheritance

« At some point, this invocationis bound to the

« For example, if the Holiday class is used to derive definition of the method that it invokes

a class called Christmas ,then a Holiday reference
could be used to pointtoa Christmas object

JAN Holiday day;

day = new Christmas();

© 2004 Pearson Addison-Wesley. Al rights reserved

« If this binding occurred at compile time, then that
line of code would call the same method every
time

* However, Java defers method binding until run
time -- this is called dynamic binding or late
binding

 Late binding provides flexibility in program design

© 2004 Pearson Addison-Wesley. Al rights reserved

References and Inheritance Example: Animals class hierarchy
« Assigning a child object to a parent reference is
considered to be a widening conversion, and can

be performed by simple assignment * Animal.java

« Assigning an parent object to a child reference can + Cow.java
be done_ also, but it is con5|dereq a narrowing . Duckjava
conversion and must be done with a cast

* Dog.java

* The widening conversion is the most useful
« Farm.java

2004 Pearson Addison-Wesley. Al rights reserved

You can use jGrasp to draw
diagram like this one

Animal Farm
{abstract}] {main}
L Sl
[e v

] Cow [] Dog I I Duck

[Proectoiass ——> Innentance
—===3 Cther (reference, etc.)

Class
Hierarchy

public abstract ciass Animal

abstract void makeSound();

public class Cow extends Animal public class Dog extends Animal
{
public void makeSound() public void makeSound()
System.out.printin("Moo-Moo"); System.out.printin(“Wuf-Wuf");
} }
} }

public class Duck extends Animal
public void makeSound()

System.out.printin(*Quack-Quack");

|}

public class Farm

public static void main(String[] args)

{
Cow c=new Cow();
Dog d=new Dog();
Duck k= new Duck();
c.makeSound();
d.makeSound();
k.makeSound();
}
Result:
Moo-Moo
Wuf-Wuf

Quack-Quack

public class Farm2
gy [{
public static void main(String[] args)
{
Animal[] a = new Animal[3];
a[0] = new Cow();
a[1] = new Dog();
a[2] = new Duck();
for(int i=0; i< a.length; i++)
afi].makeSound();
i |}
Result:
Moo-Moo
Wuf-Wuf
Quack-Quack

Not possible sinc
Animal is abstract

e can do this...

But if we add
more classes
to the Class
hierarchy

public abstract class Animal

abstract void makeSound();
public void move()

Define a new
method called

<« move(). Itis not
abstract and will
be inherited by all
} children of Animal.

System.out.printin{*walk”);

public class Cow extends Animal

public void makeSound()

System.out.printin("Moo-Moo");

public class Dog extends Animal
public void makeSound()

System.out.printin(“Wuf-Wuf");

public class Farm2b
{
public static void main(String[] args)

{

Animal[] a = new Animal[3];

a[0] = new Cow();
a[1] = new Dog();
a[2] = new Duck();

for(int i=0; i< a.length; i++)
afil.move();

Result:
walk
walk
walk

}

}

public class Duck extends Animal
public void makeSound()

System.out.printin(“Quack-Quack");

public abstract class Animal

abstract void makeSound();
public void move()

System.out.printin(“‘walk”);

public class Cow extends Animal
public void makeSound()
{

System.out.printin("Moo-Moo");

public class Dog extends Animal
public void makeSound()
System.out.printin(“Wuf-Wuf");

}

public void move() {
System.out.printin(“fly”
}
}

public class Duck extends Animal

public void makeSound() {
System.out.printin(*Quack-Quack");

Override the move
) «—+ method defined in
the Animal class.

02005 Pearson Addison-Wesley. Al rights reserved.

public class Farm2c
public static void main(String[] args)
Animal[] a = new Animal[3];
a[0] = new Cow();
a[1] = new Dog();
a[2] = new Duck();
for(int i=0; i< a.length; i++)
afi].move();
Result:
Walk
Walk
Fly
public abstract class Animal
abstract void makeSound();
public void move()
System.out.printin(“walk”);
}
public class Cow extends Animal public class Dog extends Animal
{
public void makeSound() public void makeSound()
System.out.printin("Moo-Moo"); System.out.printin(“Wuf-wuf");
}
} }

public class Duck extends Animal

public void makeSound() {
System.out.printin(“Quack-Quack");

public void move() {
System.out.printin(“fly”);

e

.
.
.

public class Farm2d

{

public static void main(String[] args)

{

Animal[] a = new Animal[3];

a[0] = new Cow();
a[1] = new Dog();
a[2] = new Duck();

Compile Error, since dive() is defined
only for Duck objects and not for all
objects derived from Animal.

public class Farm2d
{
public static void main(String[] args)
{
Animal[] a = new Animal[3];
a[0] = new Cow();
a[1] = new Dog();
a[2] = new Duck();
2]).dive();
}
}

public class Farm2d

{

public static void main(String[] args)

{
Animal[] a = new Animal[3];
a[0] = new Cow();
a[1] = new Dog();
a[2] = new Duck();
((Duck)a[2]).dive();

}

This works OK, but requires a cast
from a reference to Animal to
a reference to Duck.

Result:
Diving...

Polymorphism via Inheritance

* Now let's look at an example that pays a set of
diverse employees using a polymorphic method

¢ See Firm.java (page 486)

* See Staff.java (page 487)

* See StaffMember.java (page 489)
¢ See Volunteer.java (page 491)

» See Employee.java _ (page 492)

¢ See Executive.java (page 493)

* See Hourly.java (page 494)

[Froectclass ——p innertance
—emm> Otner reference, o)

© 2004 Pearson Addison-Wesley. All rights reserved ©2004 Pearson Addison-Wesley. Al rights reserved

. Employee T
Class
Hierarchy Chapter 9

Stafemser |
statt |
name
il ¢ iress St |
= #phone. |

+peyd) :vid

doute) : vold it void

+ payl) - double
,,,,, +Tostrng) - Stng

© 2004 Pearson Addison-Wesley. Al rights reserved

©2005 Pearson Addison-Wesley. Al rights reserved.

T o This example shows how multiple
inheritance can be faked in java

« Inheritance can be applied to interfaces as well as
classes

* That is, one interface can be derived from another Iavadang.Oblect:

interface

» The child interface inherits all abstract methods o f
the parent

» A class implementing the child interface must
define all methods from both the ancestor and
child interfaces

* Note that class hierarchies and interface
hierarchies are distinct (they do not overlap)

© 2004 Pearson Addison-Wesley. All rights reserved

©2004 Pearson Addison-Wesley. Al rights .ese.[ﬁt

/lwww.vsj.co.uk/pix/articleimages/may05/jalieads.jpg)

Polymorphism via Interfaces

« An interface name can be used as the type of an
object reference variable

Speaker current;

« The current reference can be used to point to any
object of any class that implements the ~ Speaker
interface

* The version of speak that the following line
invokes depends on the type of object that
current s referencing

current.speak();

© 2004 Pearson Addison-Wesley. Allrights reserved

Polymorphism via In

« Suppose two classes, Phil
implement the Speaker in
distinct versions of the sp

another:
Speaker guest = new Philos
guest.speak();
guest = new Dog();
guest.speak();

©2004 Pearson Addison-Wesley. Allrights reserved

terfaces

osopher and Dog, both
terface, providing
eak method

« In the following code, the first callto ~ speak
invokes one version and the second invokes

pher();

The Animals In this case
example with | Animal is an
. interface.
interfaces |
1
|
implegients

) impldments
implgments

public interface Animal

public void makeSound();

public class Cow implements Animal
public void makeSound()

System.out.printin("Moo-Moo");

public class Dog implements Animal
public void makeSound()
System.out.printin(“Wuf-Wuf");

}
}

public class iFarm

public static void main(String[] args)

Animal domestic;
domestic = new Cow();
domestic.makeSound();
domestic = new Dog();
domestic.makeSound();
domestic = new Duck();
domestic.makeSound();

Result:

Moo-Moo

Wuf-Wuf

Quack-Quack

public class Duck implements Animal
public void makeSound()

System.out.printin(“Quack-Quack");

Define a new method
called move()

N B Animal i
public void makeSound(); as'ﬁ:face" m: ©

public void move(); method cannot
} be defined as in the

public interface Animal

previous example in
which Animal was
an abstract class.

public class Cow implements Animal

public void makeSound() {
System.out.printin("Moo-Moo");

public class Dog implements Animal

public void makeSound() {
System.out.printin(“Wuf-Wuf");

Replicated
code!l!

public class Duck implements Animal

public void makeSound() {
System.out.printin(“Quack-Quack");

public class iFarm2

{

public static void main(String[] args)

{

Animal domestic;
domestic = new Cow();
domestic.move();

domestic = new Dog();
domestic.move();

domestic = new Duck();
domestic.move();

public interface Animal

public void move();

public void makeSound();

public class Cow implements Animal

public void makeSound() {
System.out.printin("Moo-Moo");

public void move() {
System.out.printin(‘walk");

public class Dog implements Animal

public void makeSound() {
System.out.printin(“Wuf-wuf");

}

public void move() {
System.out.printin(‘walk");

}

}

Result:
walk
walk
fly

}
public void move() {

public class Duck implements Animal

public void makeSound() {
System.out printin(*Quack-Quack’);

public class iFarm3
{
public static void main(String[] args)

{

Animal domestic;
domestic = new Cow();
/ldomestic.dive(); Il error

domestic = new Dog();
/ldomestic.dive(); Il error

domestic = new Duck();
/I domestic.dive(); Il error

((Duck)domestic).dive(); I OK, but uses a cast

Result:
Ducks can dive.

THE END

© 2004 Pearson Addison-Wesley. Al rights reserved

