
1

© 2004 Pearson Addison-Wesley. All rights reserved

December 6, 2006

I/O Exceptions & 
Working with Files

ComS 207: Programming I (in Java)
Iowa State University, FALL 2006
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Final Exam

• Time:
� Tuesday Dec 12 @ 7:00-9:00 p.m. 

• Location: 
� same as midterms, i.e., Hoover 2055. 

© 2004 Pearson Addison-Wesley. All rights reserved

Quick Review of Last Lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Exceptions

• An exception is an object 
that describes an unusual 
or erroneous situation.

© 2004 Pearson Addison-Wesley. All rights reserved

Exceptions
Class 
Hierarchy

© 2004 Pearson Addison-Wesley. All rights reserved

On-line Java Documentation

• http://java.sun.com/j2se/1.5.0/docs/api/index.html



2

© 2004 Pearson Addison-Wesley. All rights reserved

The try Statement

• To handle an exception in a program, the line that 
throws the exception is executed within a try block

• A try block is followed by one or more catch
clauses

• Each catch clause has an associated exception 
type and is called an exception handler

• When an exception occurs, processing continues 
at the first catch clause that matches the 
exception type

© 2004 Pearson Addison-Wesley. All rights reserved

The finally Clause

• A try statement can have an optional clause 
following the catch clauses, designated by the 
reserved word finally

• The statements in the finally clause always are 
executed

• If no exception is generated, the statements in the  
finally clause are executed after the statements in  
the try block complete

• If an exception is generated, the statements in the  
finally clause are executed after the statements in  
the appropriate catch clause complete

© 2004 Pearson Addison-Wesley. All rights reserved

Example: 

MultipleCatch.java

© 2004 Pearson Addison-Wesley. All rights reserved

Example: 

NestedCatch.java

Chapter 10

Sections 10.4 -10.6

© 2004 Pearson Addison-Wesley. All rights reserved

Exception Propagation

• An exception can be handled at a higher level if it  
is not appropriate to handle it where it occurs 

• Exceptions propagate up through the method 
calling hierarchy until they are caught and handled  
or until they reach the level of the main method

• A try block that contains a call to a method in 
which an exception is thrown can be used to catch 
that exception



3

© 2004 Pearson Addison-Wesley. All rights reserved

Exception Propagation

• See Propagation.java (page 539)

• See ExceptionScope.java (page 540)

© 2004 Pearson Addison-Wesley. All rights reserved

Checked Exceptions

• An exception is either checked or unchecked

• A checked exception either must be caught by a 
method, or must be listed in the throws clause of 
any method that may throw or propagate it

• A throws clause is appended to the method header

• The compiler will issue an error if a checked 
exception is not caught or asserted in a throws 
clause

© 2004 Pearson Addison-Wesley. All rights reserved

Unchecked Exceptions

• An unchecked exception does not require explicit 
handling, though it could be processed that way

• The only unchecked exceptions in Java are 
objects of type RuntimeException or any of its 
descendants

• Errors are similar to RuntimeException and its 
descendants in that:

� Errors should not be caught

� Errors do not require a throws clause

© 2004 Pearson Addison-Wesley. All rights reserved

Exceptions
Class 
Hierarchy

© 2004 Pearson Addison-Wesley. All rights reserved

The throw Statement

• Exceptions are thrown using the throw statement

• Usually a throw statement is executed inside an if 
statement that evaluates a condition to see if the 
exception should be thrown

• See CreatingExceptions.java (page 543)

• See OutOfRangeException.java (page 544)

© 2004 Pearson Addison-Wesley. All rights reserved

I/O Exceptions

• Let's examine issues related to exceptions and I/O

• A stream is a sequence of bytes that flow from a 
source to a destination

• In a program, we read information from an input 
stream and write information to an output stream

• A program can manage multiple streams 
simultaneously



4

© 2004 Pearson Addison-Wesley. All rights reserved

Standard I/O

• There are three standard I/O streams:

� standard output – defined by System.out

� standard input – defined by System.in

� standard error – defined by System.err

© 2004 Pearson Addison-Wesley. All rights reserved

Standard I/O

• We use System.out when we execute println
statements

• System.out and System.err typically represent a 
particular window on the monitor screen

• System.in typically represents keyboard input, 
which we've used many times with Scanner
objects

© 2004 Pearson Addison-Wesley. All rights reserved

The IOException Class

• Operations performed by some I/O classes may 
throw an IOException

� A file might not exist

� Even if the file exists, a program may not be able to find it

� The file might not contain the kind of data we expe ct

• An IOException is a checked exception

© 2004 Pearson Addison-Wesley. All rights reserved

Examples: 

FileNotFound.java

FileNotFound_Caught.java

© 2004 Pearson Addison-Wesley. All rights reserved

public Scanner( File source) throws FileNotFoundException
{

}

© 2004 Pearson Addison-Wesley. All rights reserved

Reading from Text Files

• Example: FileScanner.java

• Syntax:

• Scanner scan = new Scanner (new File("myfile.txt")) ;



5

© 2004 Pearson Addison-Wesley. All rights reserved

FileScanner.java

File

Scanner(     )

© 2004 Pearson Addison-Wesley. All rights reserved

Writing Text Files

• In Chapter 5 we explored the use of the Scanner
class to read input from a text file

• Let's now examine other classes that let us write 
data to a text file

• The FileWriter class represents a text output 
file, but with minimal support for manipulating 
data

• Therefore, we also rely on PrintStream objects, 
which have print and println methods defined 
for them

© 2004 Pearson Addison-Wesley. All rights reserved

Writing Text Files

• Finally, we'll also use the PrintWriter class for 
advanced internationalization and error checking

• We build the class that represents the output file 
by combining these classes appropriately

• See TestData.java (page 547)

• Output streams should be closed explicitly

© 2004 Pearson Addison-Wesley. All rights reserved

TestData.java
File

FileWriter(     )

BufferedWriter(     )

PrintWriter(     )

© 2004 Pearson Addison-Wesley. All rights reserved

THE END


