
1

© 2004 Pearson Addison-Wesley. All rights reserved

August 29, 2007

Data Conversion &
Scanner Class

ComS 207: Programming I (in Java)
Iowa State University, FALL 2007
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Quick review of last lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Numeric Primitive Data

• The difference between the various numeric
primitive types is their size, and therefore the
values they can store:

Type

byte
short
int
long

float
double

Storage

8 bits
16 bits
32 bits
64 bits

32 bits
64 bits

Min Value

-128
-32,768
-2,147,483,648
< -9 x 1018

+/- 3.4 x 1038 with 7 significant digits
+/- 1.7 x 10308 with 15 significant digits

Max Value

127
32,767
2,147,483,647
> 9 x 1018

© 2004 Pearson Addison-Wesley. All rights reserved

Storing Information

9278
9279
9280
9281
9282
9283
9284
9285
9286

Large values are
stored in consecutive
memory locations

1001101010011010
Each memory cell stores
a set number of bits
(usually 8 bits, or one
byte)

© 2004 Pearson Addison-Wesley. All rights reserved

Storing a short

9278
9279
9280
9281
9282
9283
9284
9285
9286

short (16 bits = 2 bytes)

© 2004 Pearson Addison-Wesley. All rights reserved

Storing a double

9278
9279
9280
9281
9282
9283
9284
9285
9286

double (64 bits = 8 bytes)

2

© 2004 Pearson Addison-Wesley. All rights reserved

Operator Precedence

© 2004 Pearson Addison-Wesley. All rights reserved

Assignment Revisited

• The assignment operator has a lower precedence
than the arithmetic operators

First the expression on the right hand
side of the = operator is evaluated

Then the result is stored in the
variable on the left hand side

answer = sum / 4 + MAX * lowest;

14 3 2

© 2004 Pearson Addison-Wesley. All rights reserved

Other material from Sec 2.4

© 2004 Pearson Addison-Wesley. All rights reserved

Assignment Revisited

• The right and left hand sides of an assignment
statement can contain the same variable

First, one is added to the
original value of count

Then the result is stored back into count
(overwriting the original value)

count = count + 1;

© 2004 Pearson Addison-Wesley. All rights reserved

Increment and Decrement

• The increment and decrement operators use only
one operand

• The increment operator (++) adds one to its
operand

• The decrement operator (--) subtracts one from
its operand

• The statement

count++;

is functionally equivalent to

count = count + 1;

© 2004 Pearson Addison-Wesley. All rights reserved

Increment and Decrement

• The increment and decrement operators can be
applied in postfix form:

count++

• or prefix form:

++count

• When used as part of a larger expression, the two
forms can have different effects

• Because of their subtleties, the increment and
decrement operators should be used with care

3

© 2004 Pearson Addison-Wesley. All rights reserved

Assignment Operators

• Often we perform an operation on a variable, and
then store the result back into that variable

• Java provides assignment operators to simplify
that process

• For example, the statement

num += count;

is equivalent to

num = num + count;

© 2004 Pearson Addison-Wesley. All rights reserved

Assignment Operators

• There are many assignment operators in Java,
including the following:

Operator

+=
-=
*=
/=
%=

Example

x += y
x -= y
x *= y
x /= y
x %= y

Equivalent To

x = x + y
x = x - y
x = x * y
x = x / y
x = x % y

© 2004 Pearson Addison-Wesley. All rights reserved

Assignment Operators

• The right hand side of an assignment operator can
be a complex expression

• The entire right-hand expression is evaluated first ,
then the result is combined with the original
variable

• Therefore

result /= (total-MIN) % num;

is equivalent to

result = result / ((total-MIN) % num);

© 2004 Pearson Addison-Wesley. All rights reserved

Assignment Operators

• The behavior of some assignment operators
depends on the types of the operands

• If the operands to the += operator are strings, the
assignment operator performs string
concatenation

• The behavior of an assignment operator (+=) is
always consistent with the behavior of the
corresponding operator (+)

Chapter 2

Sections 2.5 & 2.6

© 2004 Pearson Addison-Wesley. All rights reserved

2.5 Data Conversion

4

© 2004 Pearson Addison-Wesley. All rights reserved

Widening Conversions

© 2004 Pearson Addison-Wesley. All rights reserved

Narrowing Conversions

© 2004 Pearson Addison-Wesley. All rights reserved

Conversion Techniques

• 1) Assignment conversion
� Value of one type is assigned to a variable of anot her

type during which the value is converted to the new type.

• 2) Promotion
� Occurs automatically when certain operators need to

modify their operands.

• 3) Casting (a.k.a. type casting)
� Specified explicitly by the programmer

© 2004 Pearson Addison-Wesley. All rights reserved

Assignment conversion

float money;
int dollars;

dollars=5;

money = dollars; // OK, money is now equal to 5.0

dollars= money; //Compile error

© 2004 Pearson Addison-Wesley. All rights reserved

(automatic) promotion

float sum, result;
int count;

sum= 12.0;
count=5;

result = sum/count; // count promoted to float
// before the division

© 2004 Pearson Addison-Wesley. All rights reserved

(automatic) promotion

// the number ‘5’ is first promoted to a string and then
// the two strings are concatenated

System.out.println(“Five is equal to ” + 5);

5

© 2004 Pearson Addison-Wesley. All rights reserved

Type Casting

• The programmer explicitly asks the compiler to
change the type of a variable or a temporary result
before the next operation will take place.

• Without the cast Java typically will refuse to
compile the program

© 2004 Pearson Addison-Wesley. All rights reserved

Type Casting

float money;
int dollars;

dollars=5;

money = dollars; // OK, money is now equal to 5.0

dollars= (int) money; //Compile error OK

© 2004 Pearson Addison-Wesley. All rights reserved

Type Casting + Promotion

float result;
int total, count;

total= 12;
count=5;

result = (float) total / count; // result = 2.4
// 1. total is cast to float
// 2. count is promoted to float
// 3. the division is performed

© 2004 Pearson Addison-Wesley. All rights reserved

Type Casting + Promotion

float result;
int total, count;

total= 12;
count=5;

result = (float) (total / count); // result = 2.0
// 1. total and count a divided using integer divis ion
// 2. the intermediary result is cast to a float
// 3. this float value is assigned to result

© 2004 Pearson Addison-Wesley. All rights reserved

Casting Example

© 2004 Pearson Addison-Wesley. All rights reserved

Interactive Programs

• Programs generally need input on which to
operate

• The Scanner class provides convenient methods
for reading input values of various types

• A Scanner object can be set up to read input from
various sources, including the user typing values
on the keyboard

• Keyboard input is represented by the System.in
object

6

© 2004 Pearson Addison-Wesley. All rights reserved

Reading Input

• The following line creates a Scanner object that re ads from
the keyboard:

Scanner scan = new Scanner (System.in);

• The new operator creates the Scanner object

• Once created, the Scanner object can be used to invoke
various input methods, such as:

answer = scan.nextLine();

• In order to use the Scanner object you must put this line at
the top of your Java program

import java.util.Scanner;

© 2004 Pearson Addison-Wesley. All rights reserved

Reading Input

• The Scanner class is part of the java.util class
library, and must be imported into a program to be
used

• See Echo.java (page 91)

• The nextLine method reads all of the input until
the end of the line is found

• The details of object creation and class libraries
are discussed further in Chapter 3

© 2004 Pearson Addison-Wesley. All rights reserved

Input Tokens

• Unless specified otherwise, white space is used to
separate the elements (called tokens) of the input

• White space includes space characters, tabs, new
line characters

• The next method of the Scanner class reads the
next input token and returns it as a string

• Methods such as nextInt and nextDouble read
data of particular types

• See GasMileage.java (page 92)

© 2004 Pearson Addison-Wesley. All rights reserved

Scanner
Class

© 2004 Pearson Addison-Wesley. All rights reserved

More Scanner Examples

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

