

- When used as part of a larger expression, the two forms can have different effects
- Because of their subtleties, the increment and decrement operators should be used with care

04 Pearson Addison-Wesley, All rights reserved

Sie.	Assignme	nt Operat	ors	
A Contraction	There are ma including the	ny assignmer following:	nt operators in Java,	
A	Operator	Example	Equivalent To	
	+=	x += y	$\mathbf{x} = \mathbf{x} + \mathbf{y}$	
	-=	x -= y	x = x - y	
2 CY	*=	x *= y	x = x * y	
	/=	x /= y	$\mathbf{x} = \mathbf{x} / \mathbf{y}$	
	%=	ж %= у	x = x % y	
	© 2004 Pearson Addison-Wesley. All rig	hts reserved		

From	То
byte	short, int, long, float, or doubl
short	int, long, float, or double
char	int, long, float, or double
int	long, float, or double
long	float or double
float	double

Sie	Conversion Techniques	
A Star	 1) Assignment conversion Value of one type is assigned to a variable of another type during which the value is converted to the new type 	
A	2) Promotion Cocurs automatically when certain operators need to	
	 modify their operands. 3) Casting (a.k.a. type casting) Specified explicitly by the programmer 	
	- opecined exploring by the programmer	
R	© 2004 Pearson Addison-Wesley. All rights reserved	

Chapter 3

Using Classes and Objects

Problem Solving

- The purpose of writing a program is to solve a problem
- Solving a problem consists of multiple activities:
 - Understand the problem
 - Design a solution
 - Consider alternatives and refine the solution
 - Implement the solution
 - Test the solution

© 2004 Pearson Addison-Wesley, All rights

 These activities are not purely linear – they overlap and interact

Problem Solving The key to designing a solution is breaking it down into manageable pieces When writing software, we design separate pieces that are responsible for certain parts of the solution An object-oriented approach lends itself to this kind of solution decomposition We will dissect our solutions into pieces called objects and classes

Object-Oriented Programming

- · Java is an object-oriented programming language
- As the term implies, an object is a fundamental entity in a Java program
- Objects can be used effectively to represent realworld entities
- For instance, an object might represent a particular employee in a company
- Each employee object handles the processing and data management related to that employee

Objects

- · An object has:
 - state descriptive characteristics
 - behaviors what it can do (or what can be done to it)
- The state of a bank account includes its account number and its current balance
- The behaviors associated with a bank account include the ability to make deposits and withdrawals
- Note that the behavior of an object might change its state

© 2004 Pearson Addison-Wesley. All rights reserved

Classes

• An object is defined by a class

-Wesley, All rights re-

- · A class is the blueprint of an object
- The class uses methods to define the behaviors of the object
- The class that contains the main method of a Java program represents the entire program
- A class represents a concept, and an object represents the embodiment of that concept
- Multiple objects can be created from the same class

Aliases

- Two or more references that refer to the same object are called *aliases* of each other
- That creates an interesting situation: one object can be accessed using multiple reference variables
- Aliases can be useful, but should be managed carefully
- Changing an object through one reference changes it for all of its aliases, because there is really only one object

Garbage Collection

- When an object no longer has any valid references to it, it can no longer be accessed by the program
- The object is useless, and therefore is called garbage
- Java performs automatic garbage collection periodically, returning an object's memory to the system for future use
- In other languages, the programmer is responsible for performing garbage collection

