Anatomy of an Object

September 10, 2007

ComsS 207: Programming | (in Java)
lowa State University, FALL 2007
Instructor: Alexander Stoytchev

© 2004 Pearson Addison-Wesley. Al rights reserved

Quick review of last lecture

© 2004 Pearson Addison-Wesley. Al rights reserved

Methods in The Random Class

Random ()
Constructor: creates a new pseudorandom number generator.

float nextFloat ()
Returns a random number between 0.0 (inclusive) and 1.0 (exclusive).

int nextInt ()
Returns a random number that ranges over all possible int values (positive
and negative).

int nextInt (int num)
Returns a random number in the range O to num-1.

© 2004 Pearson Addison-Wesley. Al rights reserved

Random Example

import java.util. Random;

Random generator = new Random();
int num = generator. nextint();

float num2 = generator.nextFloat();

© 2004 Pearson Addison-Wesley. Al rights reserved

static int abs (int num)

Math Retums the absolute value of num.

Class static double acos (double num)
static double asin (double nam)

static double atan (double num)

Returs the arc cosine, arc sine, or arc tangent of num.

static double cos (double angle)

static double sin (double angle)

static double tan (double angle)
Returns the angle cosine, sine, or tangent of angle, which is measured
in radians.

static double ceil (double num)
Retums the ceiling of num, which is the smallest whole number greater
than or equal to num.

static double exp (double power)
Returns the value e raised to the specified power.

static double floor (double num)
Returns the floor of num, which Is the largest whole number less than

or equal to num.

static double pow (double num, double power)
Returns the value num raised to the specified power.

static double random ()
Retumns a random number between 0.0 (inclusive) and 1.0 (exclusive).

static double sqrt (dousle num)
Retumns the square root of num, which must be positive.

© 2004 Pearson Addison-Wesley. Al rights reserved

Math Example

value = Math.abs(total) + Math.pow(count, 4);

© 2004 Pearson Addison-Wesley. Al rights reserved




Methods in NumberFormat Class

String format (double number)
Returns a string containing the specified number formatted according to
this object’s pattern.

static NumberFormat getCurrencyInstance()
Returns a NumberFormat object that represents a currency format for the
current locale.

static mat getP T ) |
Returns a NumberFormat object that represents a percentage format for |
the current locale. |

© 2004 Pearson Addison-Wesley. Al rights reserved

NumberFormat Example

double dollars=5.994;
NumberFormat fmt = NumberFormat.getCurrencylnstance() ;
System.out.printin ( “Price = “ + fmt.format(dollars) )

RESULT:
Price = $5.99

© 2004 Pearson Addison-Wesley. Al rights reserved

Methods in DecimalFormat Class

DecimalFormat (String pattern) 1
Constructor: creates a new DecimalFormat object with the specified pattern.

void applyPattern (String pattern) |
Applies the specified pattern to this DecimalFormat object. |

|
String format (double number) |
Returns a string containing the specified number formatted according to the |
current pattern.

e e

© 2004 Pearson Addison-Wesley. Al rights reserved

DecimalFormat Example

double miles = .5395;

DecimalFormat fmt = new DecimalFormat(“0.###");
System.out.printin ( “Miles =* + fmt.format(miles) ) 8

RESULT:
Mile: -
Miles = 0.54

© 2004 Pearson Addison-Wesley. Al rights reserved

TestFormat.java example

© 2004 Pearson Addison-Wesley. Al rights reserved

Wrapper Classes

« The javalang package contains wrapper
classes that correspond to each primitive type:

Primitive Type Wrapper Class
byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character
boolean Boolean

void Void

© 2004 Pearson Addison-Wesley. Al rights reserved




Integer Class

| Integer (int value) K|
| Constructor: creates a new Integer object storing the specified value.
byte bytevalue ()
double doublevalue ()
| float floatvalue ()
| int intvalue ()
long longValue ()
Return the value of this Integer as the corresponding primitive type.

static int parselnt (String str)
Returns the int corresponding to the value stored in the

| specified string.

static String toBinaryString (int num)
| static String tohexString (int num)
| static String toOctalString (int num)
Returns a string representation of the specified integer value in the
corresponding base. |

2004 Pearson Addison-Wesley. Al ights reserved

Autoboxing Examples

Integer obj1;

int numl = 69;

objl = numil; /I automatically creates an
Ilinteger object

Integer obj2= new Integer(69);

int num2;
num2 = obj2; /I automatically extracts
[lthe int value

TestInteger.java example

© 2004 Pearson Addison-Wesley. Al rights reserved

Enumerated Types
(Section 3.7)

© 2004 Pearson Addison-Wesley. Al rights reserved

Enumerated Types

« Java allows you to define an enumerated type,
which can then be used to declare variables

* An enumerated type establishes all possible
values for a variable of that type

« The values are identifiers of your own choosing

« The following declaration creates an enumerated
type called Season

enum Season {winter, spring, summer, fall};

* Any number of values can be listed

© 2004 Pearson Addison-Wesley. Al rights reserved

Enumerated Types

« Once a type is defined, a variable of that type can
be declared

Season time;
and it can be assigned a value
time = Season.fall;

« The values are specified through the name of the
type

« Enumerated types are type-safe — you cannot
assign any value other than those listed

© 2004 Pearson Addison-Wesley. Al rights reserved




Ordinal Values

« Internally, each value of an enumerated type is
stored as an integer, called its  ordinal value

« The first value in an enumerated type has an
ordinal value of zero, the second one, and so on

* However, you cannot assign a numeric value to an
enumerated type, even if it corresponds to a valid
ordinal value

© 2004 Pearson Addison-Wesley. Al rights reserved

Run IceCream.java (page 137)
in the textbook

© 2004 Pearson Addison-Wesley. Al rights reserved

Enumerated Types

« The declaration of an enumerated type is a special
type of class, and each variable of that type is an
object

¢ The ordinal method returns the ordinal value of
the object

« The name method returns the name of the identifier
corresponding to the object's value

« See |ceCream.java (page 137)

© 2004 Pearson Addison-Wesley. Al rights reserved

Chapter 4

© 2005 Pearson Addison-Wesley. Al rights reserved.

Chapter 4

Writing Classes

« The programs we've written in previous examples
have used classes defined in the Java standard
class library

« Now we will begin to design programs that rely on
classes that we write ourselves

The class that contains the main method is just
the starting point of a program

.

True object-oriented programming is based on
defining classes that represent objects with well-
defined characteristics and functionality

© 2004 Pearson Addison-Wesley. Al rights reserved




Classes and Objects
» Recall from our overview of objects in Chapter 1
that an object has state and behavior
« Consider a six-sided die (singular of dice)
= It's state can be defined as which face is showing
= It's primary behavior is that it can be rolled

* We can represent a die in software by designing a
class called Die that models this state and
behavior

= The class serves as the blueprint for a die object

* We can then instantiate as many die objects as we
need for any particular program

2004 Pearson Addison-Wesley. Al ights reserved

Classes

« Aclass can contain data declarations and method
declarations

int size, weight;

. Data declarations
char category;

— Method declarations

L]

© 2004 Pearson Addison-Wesley. Al rights reserved

Classes

* The values of the data define the state of an objec
created from the class

« The functionality of the methods define the
behaviors of the object

* For our Die class, we might declare an integer that
represents the current value showing on the face

* One of the methods would “roll” the die by setting
that value to a random number between one and
six

Wesley. Al righs reserved

t

Classes

« We'll want to design the Die class with other data
and methods to make it a versatile and reusable
resource

« Any given program will not necessarily use all
aspects of a given class

« See RollingDice.java (page 157)
« See Die.java (page 158)

© 2004 Pearson Addison-Wesley. Al rights reserved

The Die Class

» The Die class contains two data values
= aconstant MAXthat represents the maximum face value

= aninteger faceValue that represents the current face
value

¢ Theroll method uses the random method of the
Math class to determine a new face value

» There are also methods to explicitly set and
retrieve the current face value at any time

© 2004 Pearson Addison-Wesley. Al rights reserved

The toString Method

All classes that represent objects should define a
toString  method

« The toString  method returns a character string
that represents the object in some way

Itis called automatically when an object is
concatenated to a string or when it is passed to
the printin method

*  System.out.println ("Die One: " + diel + ", Die Two: "+ die2);

© 2004 Pearson Addison-Wesley. Al rights reserved




Constructors

» As mentioned previously, a constructoris a
special method that is used to set up an object
when it is initially created

« A constructor has the same name as the class

« The Die constructor is used to set the initial face
value of each new die object to one

* We examine constructors in more detail later in
this chapter

2004 Pearson Addison-Wesley. Al ights reserved

Data Scope

« The scope of data is the area in a program in
which that data can be referenced (used)

« Data declared at the class level can be referenced
by all methods in that class

« Data declared within a method can be used only in
that method

« Data declared within a method is called local data

« Inthe Die class, the variable result is declared
inside the toString  method -- it is local to that
method and cannot be referenced anywhere else

© 2004 Pearson Addison-Wesley. Al rights reserved

Instance Data

* The faceValue variable inthe Die class is called
instance data because each instance (object) that
is created has its own version of it

« A class declares the type of the data, but it does
not reserve any memory space for it

« Everytime a Die objectis created, a new
faceValue variable is created as well

* The objects of a class share the method
definitions, but each object has its own data space

« That's the only way two objects can have different
states

© 2004 Pearson Addison-Wesley. Al rights reserved

Instance Data

« We can depict the two Die objects from the
RollingDice program as follows:

Each object maintains its own faceValue
variable, and thus its own state

© 2004 Pearson Addison-Wesley. Al rights reserved

Run examples from the book

© 2004 Pearson Addison-Wesley. Al rights reserved

THE END

© 2004 Pearson Addison-Wesley. Al rights reserved




