
1

© 2004 Pearson Addison-Wesley. All rights reserved

September 12, 2007

Encapsulation

ComS 207: Programming I (in Java)
Iowa State University, FALL 2007
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Administrative Stuff

• HW3 is due on Friday
• No new HW will be out this week

• Next Tuesday we will have Midterm 1:
� Sep 18 @ 6:30 – 7:45pm.

• Location: Curtiss Hall 127 (classroom)

• On Monday we will have a review session

• No class on Friday (Sep 21, 2007)

© 2004 Pearson Addison-Wesley. All rights reserved

Quick review of last lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Writing Classes

• The programs we’ve written in previous examples
have used classes defined in the Java standard
class library

• Now we will begin to design programs that rely on
classes that we write ourselves

• The class that contains the main method is just
the starting point of a program

• True object-oriented programming is based on
defining classes that represent objects with well-
defined characteristics and functionality

© 2004 Pearson Addison-Wesley. All rights reserved

Classes and Objects

• Recall from our overview of objects in Chapter 1
that an object has state and behavior

• Consider a six-sided die (singular of dice)

� It’s state can be defined as which face is showing

� It’s primary behavior is that it can be rolled

• We can represent a die in software by designing a
class called Die that models this state and
behavior

� The class serves as the blueprint for a die object

• We can then instantiate as many die objects as we
need for any particular program

© 2004 Pearson Addison-Wesley. All rights reserved

Classes

• A class can contain data declarations and method
declarations

int size, weight;
char category;

Data declarations

Method declarations

2

© 2004 Pearson Addison-Wesley. All rights reserved

Classes

• The values of the data define the state of an objec t
created from the class

• The functionality of the methods define the
behaviors of the object

• For our Die class, we might declare an integer that
represents the current value showing on the face

• One of the methods would “roll” the die by setting
that value to a random number between one and
six

© 2004 Pearson Addison-Wesley. All rights reserved

Classes

• We’ll want to design the Die class with other data
and methods to make it a versatile and reusable
resource

• Any given program will not necessarily use all
aspects of a given class

• See RollingDice.java (page 157)
• See Die.java (page 158)

© 2004 Pearson Addison-Wesley. All rights reserved

The Die Class

• The Die class contains two data values

� a constant MAX that represents the maximum face value

� an integer faceValue that represents the current face
value

• The roll method uses the random method of the
Math class to determine a new face value

• There are also methods to explicitly set and
retrieve the current face value at any time

© 2004 Pearson Addison-Wesley. All rights reserved

The toString Method

• All classes that represent objects should define a
toString method

• The toString method returns a character string
that represents the object in some way

• It is called automatically when an object is
concatenated to a string or when it is passed to
the println method

• System.out.println ("Die One: " + die1 + ", Die Two: " + die2);

© 2004 Pearson Addison-Wesley. All rights reserved

Constructors

• As mentioned previously, a constructor is a
special method that is used to set up an object
when it is initially created

• A constructor has the same name as the class

• The Die constructor is used to set the initial face
value of each new die object to one

• We examine constructors in more detail later in
this chapter

© 2004 Pearson Addison-Wesley. All rights reserved

Data Scope

• The scope of data is the area in a program in
which that data can be referenced (used)

• Data declared at the class level can be referenced
by all methods in that class

• Data declared within a method can be used only in
that method

• Data declared within a method is called local data

• In the Die class, the variable result is declared
inside the toString method -- it is local to that
method and cannot be referenced anywhere else

3

© 2004 Pearson Addison-Wesley. All rights reserved

Instance Data

• The faceValue variable in the Die class is called
instance data because each instance (object) that
is created has its own version of it

• A class declares the type of the data, but it does
not reserve any memory space for it

• Every time a Die object is created, a new
faceValue variable is created as well

• The objects of a class share the method
definitions, but each object has its own data space

• That's the only way two objects can have different
states

© 2004 Pearson Addison-Wesley. All rights reserved

Instance Data

• We can depict the two Die objects from the
RollingDice program as follows:

die1 5faceValue

die2 2faceValue

Each object maintains its own faceValue
variable, and thus its own state

Chapter 4

Section 4.3

© 2004 Pearson Addison-Wesley. All rights reserved

Encapsulation

• We can take one of two views of an object:

� internal - the details of the variables and methods of the
class that defines it

� external - the services that an object provides and how
the object interacts with the rest of the system

• From the external view, an object is an
encapsulated entity, providing a set of specific
services

• These services define the interface to the object

© 2004 Pearson Addison-Wesley. All rights reserved

Encapsulation

• One object (called the client) may use another
object for the services it provides

• The client of an object may request its services
(call its methods), but it should not have to be
aware of how those services are accomplished

• Any changes to the object's state (its variables)
should be made by that object's methods

• We should make it difficult, if not impossible, for a
client to access an object’s variables directly

• That is, an object should be self-governing

© 2004 Pearson Addison-Wesley. All rights reserved

Encapsulation

• An encapsulated object can be thought of as a
black box -- its inner workings are hidden from the
client

• The client invokes the interface methods of the
object, which manages the instance data

Methods

Data

Client

4

© 2004 Pearson Addison-Wesley. All rights reserved

myMethod();

myMethodcompute

Method Control Flow

• If the called method is in the same class, only the
method name is needed

© 2004 Pearson Addison-Wesley. All rights reserved

doIt helpMe

helpMe();obj.doIt();

main

Method Control Flow

• The called method is often part of another class or
object

© 2004 Pearson Addison-Wesley. All rights reserved

getCurrencyInstance() getInstance()

return
getInstance(..);

NumberFormat fmt=
NumberFormat.

getCurrencyInstance();

main

Why we don’t have to use ‘new’ with the
NumberFormat class?
• The ‘new’ is performed for you inside that class

NumberFormat.java

NumberFormat format =
new NumberFormat(..);

return format;

© 2004 Pearson Addison-Wesley. All rights reserved

UML Diagrams

• UML stands for the Unified Modeling Language

• UML diagrams show relationships among classes
and objects

• A UML class diagram consists of one or more
classes, each with sections for the class name,
attributes (data), and operations (methods)

• Lines between classes represent associations

• A dotted arrow shows that one class uses the
other (calls its methods)

© 2004 Pearson Addison-Wesley. All rights reserved

UML Class Diagrams

• A UML class diagram for the RollingDice
program:

RollingDice

main (args : String[]) : void

Die

faceValue : int

roll() : int
setFaceValue (int value) : void
getFaceValue() : int
toString() : String

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Modifiers

• In Java, we accomplish encapsulation through the
appropriate use of visibility modifiers

• A modifier is a Java reserved word that specifies
particular characteristics of a method or data

• We've used the final modifier to define constants

• Java has three visibility modifiers: public,
protected, and private

• The protected modifier involves inheritance,
which we will discuss later

5

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Modifiers

public private

Variables

Methods
Provide services

to clients

Support other
methods in the

class

Enforce
encapsulation

Violate
encapsulation

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Modifiers

• Members of a class that are declared with public
visibility can be referenced anywhere

• Members of a class that are declared with private
visibility can be referenced only within that class

• Members declared without a visibility modifier
have default visibility and can be referenced by
any class in the same package

• An overview of all Java modifiers is presented in
Appendix E

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Modifiers

• Public variables violate encapsulation because
they allow the client to “reach in” and modify the
values directly

• Therefore instance variables should not be
declared with public visibility

• It is acceptable to give a constant public visibili ty,
which allows it to be used outside of the class

• Public constants do not violate encapsulation
because, although the client can access it, its
value cannot be changed

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Modifiers

• Methods that provide the object's services are
declared with public visibility so that they can be
invoked by clients

• Public methods are also called service methods

• A method created simply to assist a service
method is called a support method

• Since a support method is not intended to be
called by a client, it should not be declared with
public visibility

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Modifiers

public private

Variables

Methods
Provide services

to clients

Support other
methods in the

class

Enforce
encapsulation

Violate
encapsulation

© 2004 Pearson Addison-Wesley. All rights reserved

Accessors and Mutators

• Because instance data is private, a class usually
provides services to access and modify data
values

• An accessor method returns the current value of a
variable

• A mutator method changes the value of a variable

• The names of accessor and mutator methods take
the form getX and setX, respectively, where X is
the name of the value

• They are sometimes called “getters” and “setters”

6

© 2004 Pearson Addison-Wesley. All rights reserved

Mutator Restrictions

• The use of mutators gives the class designer the
ability to restrict a client’s options to modify an
object’s state

• A mutator is often designed so that the values of
variables can be set only within particular limits

• For example, the setFaceValue mutator of the
Die class should have restricted the value to the
valid range (1 to MAX)

• We’ll see in Chapter 5 how such restrictions can
be implemented

© 2004 Pearson Addison-Wesley. All rights reserved

Run examples from the book

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

