Anatomy of a Method
HW3 is due Today

September 14, 2007

ComsS 207: Programming | (in Java)
lowa State University, FALL 2007
© 2004 Pearson Addison-Wesley. Al rights reserved Instructor: Alexander Stoytchev

© 2004 Pearson Addison-Wesley. Al rights reserved

Midterm 1

¢ Next Tuesday Sep 18 @ 6:30 — 7:45pm.
 Location: Curtiss Hall 127 (classsroom) . .
Quick review of last lecture

* On Monday we will have a review session

* No class on Friday (Sep 21, 2006)

© 2004 Pearson Addison-Wesley. Al rights reserved

© 2004 Pearson Addison-Wesley. Al rights reserved

Encapsulation Encapsulation
« One object (called the client) may use another

* We can take one of two views of an object:
object for the services it provides

= internal - the details of the variables and methods of the
Cesstatceinestt « The client of an object may request its services
(call its methods), but it should not have to be

= external - the services that an object provides and how
aware of how those services are accomplished

the object interacts with the rest of the system

« Any changes to the object's state (its variables)
should be made by that object's methods

» From the external view, an object is an
encapsulated entity, providing a set of specific

services
« We should make it difficult, if not impossible, for

» These services define the interface to the object client to access an object's variables directly

« That is, an object should be self-governing

© 2004 Pearson Addison-Wesley. Al rights reserved © 2004 Pearson Addison-Wesley. Al rights reserved

Encapsulation

* An encapsulated object can be thought of as a
black box -- its inner workings are hidden from the
client

« The client invokes the interface methods of the
object, which manages the instance data

Client <) Methods

2004 Pearson Addison-Wesley. Al ights reserved

Visibility Modifiers
« In Java, we accomplish encapsulation through the

appropriate use of visibility modifiers

* A modifier is a Java reserved word that specifies
particular characteristics of a method or data

« We've used the final modifier to define constants

« Java has three visibility modifiers: public ,
protected , and private

* The protected modifier involves inheritance,
which we will discuss later

2004 Pearson Addison-Wesley. Al rights reserved

Visibility Modifiers
* Members of a class that are declared with public

visibility can be referenced anywhere

* Members of a class that are declared with private
visibility can be referenced only within that class

* Members declared without a visibility modifier
have default visibility and can be referenced by
any class in the same package

« An overview of all Java modifiers is presented in
Appendix E

© 2004 Pearson Addison-Wesley. Al rights reserved

Client Server

Methods Methods

§ Visibility Modifiers

public private
Variables Vlolate_ Enforce_
encapsulation encapsulation
. . Support other
Methods | Provide services i A .
to clients
class

2004 Pearson Addison-Wesley. Al ights reserved

< Public variables violate encapsulation because
they allow the client to “reach in” and modify the
values directly

« Therefore instance variables should not be
declared with public visibility

« lItis acceptable to give a constant public visibili
which allows it to be used outside of the class

« Public constants do not violate encapsulation
because, although the client can access it, its
value cannot be changed

ty,

Visibility Modifiers

» Methods that provide the object's services are
declared with public visibility so that they can be
invoked by clients

* Public methods are also called service methods

* A method created simply to assist a service
method is called a support method

» Since a support method is not intended to be

called by a client, it should not be declared with
public visibility

© 2004 Pearson Addison-Wesley. Al rights reserved

Accessors and Mutators

< Because instance data is private, a class usually
provides services to access and modify data
values

« An accessor method returns the current value of a
variable

« A mutator method changes the value of a variable

« The names of accessor and mutator methods take
the form getX and setX , respectively, where Xis
the name of the value

« They are sometimes called “getters” and “setters”

© 2004 Pearson Addison-Wesley. Al rights reserved

Mutator Restrictions

« The use of mutators gives the class designer the
ability to restrict a client’s options to modify an
object’s state

« A mutator is often designed so that the values of
variables can be set only within particular limits

* For example, the setFaceValue mutator of the
Die class should have restricted the value to the
valid range (1to MAX

* We'll see in Chapter 5 how such restrictions can
be implemented

© 2004 Pearson Addison-Wesley. Al rights reserved

Examples

© 2004 Pearson Addison-Wesley. Al rights reserved

Chapter 4

©2005 Pearson Addison-Wesley. Al ights reserve o

Method Declarations

« Let's now examine method declarations in more
detail

« A method declaration specifies the code that will
be executed when the method is invoked (called)

+« When a method is invoked, the flow of control
jumps to the method and executes its code

« When complete, the flow returns to the place
where the method was called and continues

« The invocation may or may not return a value,
depending on how the method is defined

© 2004 Pearson Addison-Wesley. Al rights reserved

Method Control Flow

« If the called method is in the same class, only the
method name is needed

compute myMethod

© 2004 Pearson Addison-Wesley. Al ights reserved

Method Control Flow

« The called method is often part of another class or
object

main dolt helpMe
——
obj.dolt(); helpMe(); ———|
g=

© 2004 Pearson Addison-Wesley. Al rights reserved

Method Header

* A method declaration begins witha method header

char calc (int num1, int num2, String message)

I — _
~—
":‘Zt;:d parameter list
return The parameter list specifies the type
type and name of each parameter

The name of a parameter in the method
declaration is called a formal parameter

© 2004 Pearson Addison-Wesley. Al rights reserved

Method Body

« The method header is followed by the method
body

char calc (int num1, int num2, String message)

int sum = numl + numz2;
char result = message.charAt (sum);

return result; sum and result

} I are local data
. They are created
The return expression each time the
must be consistent with method is called, and
the return type are destroyed when

it finishes executing

© 2004 Pearson Addison-Wesley. Al rights reserved

The return Statement

« The return type of a method indicates the type of
value that the method sends back to the calling
location

* A method that does not return a value has a void
return type

* Areturn statement specifies the value that will be
returned

return expression;

* Its expression must conform to the return type

© 2004 Pearson Addison-Wesley. Al rights reserved

Parameters

When a method is called, the actual parameters in
the invocation are copied into the formal
parameters in the method header

ch = obj.calc (25, count, "Hello");

— 9 —

! ! !

char calc (int numl, int num2, String message)

{

int sum = numl + numz2;
char result = message.charAt (sum);

return result;

© 2004 Pearson Addison-Wesley. Al rights reserved

Local Data

« As we've seen, local variables can be declared
inside a method

* The formal parameters of a method create
automatic local variables when the method is
invoked

* When the method finishes, all local variables are
destroyed (including the formal parameters)

» Keep in mind that instance variables, declared at
the class level, exists as long as the object exist s

© 2004 Pearson Addison-Wesley. Al ights reserved

Bank Account Example

« Let’s look at another example that demonstrates
the implementation details of classes and methods

« We'll represent a bank account by a class named
Account

« |t's state can include the account number, the
current balance, and the name of the owner

« An account’s behaviors (or services) include
deposits and withdrawals, and adding interest

© 2004 Pearson Addison-Wesley. Al rights reserved

Driver Programs

« Adriver program drives the use of other, more
interesting parts of a program

« Driver programs are often used to test other parts
of the software

e The Transactions class contains a main method
that drives the use of the Account class,
exercising its services

» See Transactions.java (page 172)
* See Account.java (page 173)

s0n Addison-Wesley. Al ights reserved

Bank Account Example

—
acctl El—' acctNumber

balance

(10256 |
name‘ —’—H[“Ted Murphy”]

—
acct2 El—‘ acctNumber
balance
name‘ #H[“Jane Smith”]
@@

© 2004 Pearson Addison-Wesley. Al rights reserved

Bank Account Example

« There are some improvements that can be made to
the Account class

» Formal getters and setters could have been
defined for all data

* The design of some methods could also be more
robust, such as verifying that the ~ amount
parameter to the withdraw method is positive

© 2004 Pearson Addison-

ley. All rights reserved

Constructors Revisited

« Note that a constructor has no return type
specified in the method header, not even void

* A common error is to put a return type on a
constructor, which makes it a “regular” method
that happens to have the same name as the class

« The programmer does not have to define a
constructor for a class

* Each class has a default constructor that accepts
no parameters

© 2004 Pearson Addison-Wesley. Al rights reserved

Run examples from the book

P ©2004 Pearson Addison-Wesley. Al rights reserved

THE END

P © 2004 Pearson Addison-Wesley. Al rights reserve u

