
1

© 2004 Pearson Addison-Wesley. All rights reserved

September 14, 2007

Anatomy of a Method

ComS 207: Programming I (in Java)
Iowa State University, FALL 2007
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

HW3 is due Today

© 2004 Pearson Addison-Wesley. All rights reserved

Midterm 1

• Next Tuesday Sep 18 @ 6:30 – 7:45pm.

• Location: Curtiss Hall 127 (classsroom)

• On Monday we will have a review session

• No class on Friday (Sep 21, 2006)

© 2004 Pearson Addison-Wesley. All rights reserved

Quick review of last lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Encapsulation

• We can take one of two views of an object:

� internal - the details of the variables and methods of the
class that defines it

� external - the services that an object provides and how
the object interacts with the rest of the system

• From the external view, an object is an
encapsulated entity, providing a set of specific
services

• These services define the interface to the object

© 2004 Pearson Addison-Wesley. All rights reserved

Encapsulation

• One object (called the client) may use another
object for the services it provides

• The client of an object may request its services
(call its methods), but it should not have to be
aware of how those services are accomplished

• Any changes to the object's state (its variables)
should be made by that object's methods

• We should make it difficult, if not impossible, for a
client to access an object’s variables directly

• That is, an object should be self-governing

2

© 2004 Pearson Addison-Wesley. All rights reserved

Encapsulation

• An encapsulated object can be thought of as a
black box -- its inner workings are hidden from the
client

• The client invokes the interface methods of the
object, which manages the instance data

Methods

Data

Client

© 2004 Pearson Addison-Wesley. All rights reserved

Client-Server Relation

Methods

Data

Methods

Data

Client Server

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Modifiers

• In Java, we accomplish encapsulation through the
appropriate use of visibility modifiers

• A modifier is a Java reserved word that specifies
particular characteristics of a method or data

• We've used the final modifier to define constants

• Java has three visibility modifiers: public ,
protected , and private

• The protected modifier involves inheritance,
which we will discuss later

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Modifiers

public private

Variables

Methods
Provide services

to clients

Support other
methods in the

class

Enforce
encapsulation

Violate
encapsulation

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Modifiers

• Members of a class that are declared with public
visibility can be referenced anywhere

• Members of a class that are declared with private
visibility can be referenced only within that class

• Members declared without a visibility modifier
have default visibility and can be referenced by
any class in the same package

• An overview of all Java modifiers is presented in
Appendix E

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Modifiers

• Public variables violate encapsulation because
they allow the client to “reach in” and modify the
values directly

• Therefore instance variables should not be
declared with public visibility

• It is acceptable to give a constant public visibili ty,
which allows it to be used outside of the class

• Public constants do not violate encapsulation
because, although the client can access it, its
value cannot be changed

3

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Modifiers

• Methods that provide the object's services are
declared with public visibility so that they can be
invoked by clients

• Public methods are also called service methods

• A method created simply to assist a service
method is called a support method

• Since a support method is not intended to be
called by a client, it should not be declared with
public visibility

© 2004 Pearson Addison-Wesley. All rights reserved

Accessors and Mutators

• Because instance data is private, a class usually
provides services to access and modify data
values

• An accessor method returns the current value of a
variable

• A mutator method changes the value of a variable

• The names of accessor and mutator methods take
the form getX and setX , respectively, where X is
the name of the value

• They are sometimes called “getters” and “setters”

© 2004 Pearson Addison-Wesley. All rights reserved

Mutator Restrictions

• The use of mutators gives the class designer the
ability to restrict a client’s options to modify an
object’s state

• A mutator is often designed so that the values of
variables can be set only within particular limits

• For example, the setFaceValue mutator of the
Die class should have restricted the value to the
valid range (1 to MAX)

• We’ll see in Chapter 5 how such restrictions can
be implemented

© 2004 Pearson Addison-Wesley. All rights reserved

Examples

Chapter 4

Sections 4.4 & 4.5

© 2004 Pearson Addison-Wesley. All rights reserved

Method Declarations

• Let’s now examine method declarations in more
detail

• A method declaration specifies the code that will
be executed when the method is invoked (called)

• When a method is invoked, the flow of control
jumps to the method and executes its code

• When complete, the flow returns to the place
where the method was called and continues

• The invocation may or may not return a value,
depending on how the method is defined

4

© 2004 Pearson Addison-Wesley. All rights reserved

myMethod();

myMethodcompute

Method Control Flow

• If the called method is in the same class, only the
method name is needed

© 2004 Pearson Addison-Wesley. All rights reserved

doIt helpMe

helpMe();obj.doIt();

main

Method Control Flow

• The called method is often part of another class or
object

© 2004 Pearson Addison-Wesley. All rights reserved

Method Header

• A method declaration begins with a method header

char calc (int num1, int num2, String message)

method
name

return
type

parameter list

The parameter list specifies the type
and name of each parameter

The name of a parameter in the method
declaration is called a formal parameter

© 2004 Pearson Addison-Wesley. All rights reserved

Method Body

• The method header is followed by the method
body

char calc (int num1, int num2, String message)

{
int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

The return expression
must be consistent with
the return type

sum and result
are local data

They are created
each time the
method is called, and
are destroyed when
it finishes executing

© 2004 Pearson Addison-Wesley. All rights reserved

The return Statement

• The return type of a method indicates the type of
value that the method sends back to the calling
location

• A method that does not return a value has a void
return type

• A return statement specifies the value that will be
returned

return expression;

• Its expression must conform to the return type

© 2004 Pearson Addison-Wesley. All rights reserved

Parameters
• When a method is called, the actual parameters in

the invocation are copied into the formal
parameters in the method header

char calc (int num1, int num2, String message)

{
int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

ch = obj.calc (25, count, "Hello");

5

© 2004 Pearson Addison-Wesley. All rights reserved

Local Data

• As we’ve seen, local variables can be declared
inside a method

• The formal parameters of a method create
automatic local variables when the method is
invoked

• When the method finishes, all local variables are
destroyed (including the formal parameters)

• Keep in mind that instance variables, declared at
the class level, exists as long as the object exist s

© 2004 Pearson Addison-Wesley. All rights reserved

Bank Account Example

• Let’s look at another example that demonstrates
the implementation details of classes and methods

• We’ll represent a bank account by a class named
Account

• It’s state can include the account number, the
current balance, and the name of the owner

• An account’s behaviors (or services) include
deposits and withdrawals, and adding interest

© 2004 Pearson Addison-Wesley. All rights reserved

Driver Programs

• A driver program drives the use of other, more
interesting parts of a program

• Driver programs are often used to test other parts
of the software

• The Transactions class contains a main method
that drives the use of the Account class,
exercising its services

• See Transactions.java (page 172)
• See Account.java (page 173)

© 2004 Pearson Addison-Wesley. All rights reserved

Bank Account Example

acct1 72354acctNumber

102.56balance

name “Ted Murphy”

acct2 69713acctNumber

40.00balance

name “Jane Smith”

© 2004 Pearson Addison-Wesley. All rights reserved

Bank Account Example

• There are some improvements that can be made to
the Account class

• Formal getters and setters could have been
defined for all data

• The design of some methods could also be more
robust, such as verifying that the amount
parameter to the withdraw method is positive

© 2004 Pearson Addison-Wesley. All rights reserved

Constructors Revisited

• Note that a constructor has no return type
specified in the method header, not even void

• A common error is to put a return type on a
constructor, which makes it a “regular” method
that happens to have the same name as the class

• The programmer does not have to define a
constructor for a class

• Each class has a default constructor that accepts
no parameters

6

© 2004 Pearson Addison-Wesley. All rights reserved

Run examples from the book

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

