
1

© 2004 Pearson Addison-Wesley. All rights reserved

September 28, 2007

The ‘while’ Statement

ComS 207: Programming I (in Java)
Iowa State University, FALL 2007
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

HW4 Questions?

© 2004 Pearson Addison-Wesley. All rights reserved

Quick review of last lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Logic of an if statement

condition
evaluated

statement

true
false

© 2004 Pearson Addison-Wesley. All rights reserved

Logic of an if-else statement

condition
evaluated

statement1

true false

statement2

© 2004 Pearson Addison-Wesley. All rights reserved

The switch Statement

• The general syntax of a switch statement is:

switch (expression)
{

case value1 :
statement-list1

case value2 :
statement-list2

case value3 :
statement-list3

case ...

}

switch
and

case
are

reserved
words

If expression
matches value2,
control jumps
to here

2

© 2004 Pearson Addison-Wesley. All rights reserved

The switch Statement

switch (option)
{

case 'A':
aCount++;
break;

case 'B':
bCount++;
break;

case 'C':
cCount++;
break;

}

• An example of a switch statement:

© 2004 Pearson Addison-Wesley. All rights reserved

Block Statements

• In an if-else statement, the if portion, or the
else portion, or both, could be block statements

if (total > MAX)
{

System.out.println ("Error!!");
errorCount++;

}
else
{

System.out.println ("Total: " + total);
current = total*2;

}

• See Guessing.java (page 216)

© 2004 Pearson Addison-Wesley. All rights reserved

Other Stuff from Section 5.3

© 2004 Pearson Addison-Wesley. All rights reserved

Comparing Data

• When comparing data using boolean expressions,
it's important to understand the nuances of certain
data types

• Let's examine some key situations:

� Comparing floating point values for equality
� Comparing characters
� Comparing strings (alphabetical order)
� Comparing object vs. comparing object references

© 2004 Pearson Addison-Wesley. All rights reserved

Comparing Float Values

• You should rarely use the equality operator (==)
when comparing two floating point values (float
or double)

• Two floating point values are equal only if their
underlying binary representations match exactly

• Computations often result in slight differences tha t
may be irrelevant

• In many situations, you might consider two
floating point numbers to be "close enough" even
if they aren't exactly equal

© 2004 Pearson Addison-Wesley. All rights reserved

Comparing Float Values

• To determine the equality of two floats, you may
want to use the following technique:

if (Math.abs(f1 - f2) < TOLERANCE)
System.out.println ("Essentially equal");

• If the difference between the two floating point
values is less than the tolerance, they are
considered to be equal

• The tolerance could be set to any appropriate
level, such as 0.000001

3

© 2004 Pearson Addison-Wesley. All rights reserved

Comparing Characters

• As we've discussed, Java character data is based
on the Unicode character set

• Unicode establishes a particular numeric value for
each character, and therefore an ordering

• We can use relational operators on character data
based on this ordering

• For example, the character '+' is less than the
character ' J' because it comes before it in the
Unicode character set

• Appendix C provides an overview of Unicode

© 2004 Pearson Addison-Wesley. All rights reserved

Comparing Characters

• In Unicode, the digit characters (0-9) are
contiguous and in order

• Likewise, the uppercase letters (A-Z) and
lowercase letters (a-z) are contiguous and in order

97 through 122a – z

65 through 90A – Z

48 through 570 – 9

Unicode ValuesCharacters

© 2004 Pearson Addison-Wesley. All rights reserved

Comparing Strings
• Remember that in Java a character string is an

object

• The equals method can be called with strings to
determine if two strings contain exactly the same
characters in the same order

• The equals method returns a boolean result

if (name1.equals(name2))
System.out.println ("Same name");

© 2004 Pearson Addison-Wesley. All rights reserved

Comparing Strings

• We cannot use the relational operators to compare
strings

• The String class contains a method called
compareTo to determine if one string comes
before another

• A call to name1.compareTo(name2)

� returns zero if name1 and name2 are equal (contain the
same characters)

� returns a negative value if name1 is less than name2

� returns a positive value if name1 is greater than name2

© 2004 Pearson Addison-Wesley. All rights reserved

Comparing Strings

if (name1.compareTo(name2) < 0)
System.out.println (name1 + "comes first");

else
if (name1.compareTo(name2) == 0)

System.out.println ("Same name");
else

System.out.println (name2 + "comes first");

• Because comparing characters and strings is
based on a character set, it is called a
lexicographic ordering

© 2004 Pearson Addison-Wesley. All rights reserved

Lexicographic Ordering
• Lexicographic ordering is not strictly alphabetical

when uppercase and lowercase characters are
mixed

• For example, the string "Great" comes before the
string "fantastic" because all of the uppercase
letters come before all of the lowercase letters in
Unicode

• Also, short strings come before longer strings
with the same prefix (lexicographically)

• Therefore "book" comes before "bookcase"

4

© 2004 Pearson Addison-Wesley. All rights reserved

Comparing Objects

• The == operator can be applied to objects – it
returns true if the two references are aliases of
each other

• The equals method is defined for all objects, but
unless we redefine it when we write a class, it has
the same semantics as the == operator

• It has been redefined in the String class to
compare the characters in the two strings

• When you write a class, you can redefine the
equals method to return true under whatever
conditions are appropriate

Chapter 5

Section 5.5

© 2004 Pearson Addison-Wesley. All rights reserved

Repetition Statements

• Repetition statements allow us to execute a
statement multiple times

• Often they are referred to as loops

• Like conditional statements, they are controlled by
boolean expressions

• Java has three kinds of repetition statements:

� the while loop
� the do loop
� the for loop

• The programmer should choose the right kind of
loop for the situation

© 2004 Pearson Addison-Wesley. All rights reserved

Logic of an if statement

condition
evaluated

statement

true
false

© 2004 Pearson Addison-Wesley. All rights reserved

Logic of a while Loop

statement

true false

condition
evaluated

© 2004 Pearson Addison-Wesley. All rights reserved

The while Statement

• A while statement has the following syntax:

while (condition)
statement;

• If the condition is true, the statement is
executed

• Then the condition is evaluated again, and if it is
still true, the statement is executed again

• The statement is executed repeatedly until the
condition becomes false

5

© 2004 Pearson Addison-Wesley. All rights reserved

The while Statement

• An example of a while statement:

int count = 1;
while (count <= 5)
{

System.out.println (count);
count++;

}

• If the condition of a while loop is false initially,
the statement is never executed

• Therefore, the body of a while loop will execute
zero or more times

© 2004 Pearson Addison-Wesley. All rights reserved

The while Statement

• Let's look at some examples of loop processing

• A loop can be used to maintain a running sum

• A sentinel value is a special input value that
represents the end of input

• See Average.java (page 229)

• A loop can also be used for input validation,
making a program more robust

• See WinPercentage.java (page 231)

© 2004 Pearson Addison-Wesley. All rights reserved

Example: Average.java (page 229)

© 2004 Pearson Addison-Wesley. All rights reserved

Example: WinPercentage.java (page 231)

© 2004 Pearson Addison-Wesley. All rights reserved

Infinite Loops

• The body of a while loop eventually must make
the condition false

• If not, it is called an infinite loop, which will
execute until the user interrupts the program

• This is a common logical error

• You should always double check the logic of a
program to ensure that your loops will terminate
normally

© 2004 Pearson Addison-Wesley. All rights reserved

Infinite Loops

• An example of an infinite loop:

int count = 1;
while (count <= 25)
{

System.out.println (count);
count = count - 1;

}

• This loop will continue executing until interrupted
(Control-C) or until an underflow error occurs

6

© 2004 Pearson Addison-Wesley. All rights reserved

Nested Loops

• Similar to nested if statements, loops can be
nested as well

• That is, the body of a loop can contain another
loop

• For each iteration of the outer loop, the inner loo p
iterates completely

• See PalindromeTester.java (page 235)

© 2004 Pearson Addison-Wesley. All rights reserved

Nested Loops

• How many times will the string "Here" be printed?

count1 = 1;
while (count1 <= 10)
{

count2 = 1;
while (count2 <= 20)
{

System.out.println ("Here");
count2++;

}
count1++;

} 10 * 20 = 200

© 2004 Pearson Addison-Wesley. All rights reserved

Analogy for Nested Loops

http://www.brandondufau.com/archives/odometer%201.jpg © 2004 Pearson Addison-Wesley. All rights reserved

Analogy for Nested Loops

http://static.howstuffworks.com/gif/odometer2.jpg

Inner Loop

Outer Loop

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

