

The von Koch Curve and Snowflake

Q2004 Pearson Addison.Westey. All rahts reserned [http://www.bfoit.org/Intro_to_Programming/TT_Recursion.html]

Replace the inner third of it with an equilateral triangle

Recursive Definitions

- Consider the following list of numbers:

$$
24,88,40,37
$$

- Such a list can be defined as follows:

$$
\begin{aligned}
& \text { A LIST is a: number } \\
& \text { or a: number comma LIST }
\end{aligned}
$$

- That is, a LIST is defined to be a single number, or a number followed by a comma followed by a LIST
- The concept of a LIST is used to define itself

Recursive Programming

- Note that just because we can use recursion to solve a problem, doesn't mean we should
- For instance, we usually would not use recursion to solve the sum of 1 to N problem, because the iterative version is easier to understand
- However, for some problems, recursion provides an elegant solution, often cleaner than an iterative version
- You must carefully decide whether recursion is the correct technique for any problem

Recursive Programming

```
// This method returns the sum of 1 to num
public int sum (int num)
{
    int result;
    if (num == 1)
        result = 1;
    else
        result = num + sum (num-1);
    return result;
}

\section*{Maze Traversal}
- We can use recursion to find a path through a maze
- From each location, we can search in each direction
- Recursion keeps track of the path through the maze
- The base case is an invalid move or reaching the final destination
- See MazeSearch. java (page 583)
- See Maze. java (page 584)


\section*{Towers of Hanoi}
- The Towers of Hanoi is a puzzle made up of three vertical pegs and several disks that slide on the pegs
- The disks are of varying size, initially placed on one peg with the largest disk on the bottom with increasingly smaller ones on top
- The goal is to move all of the disks from one peg to another under the following rules:
- We can move only one disk at a time
- We cannot move a larger disk on top of a smaller one



\section*{Indirect Recursion}
- A method invoking itself is considered to be direct recursion
- A method could invoke another method, which invokes another, etc., until eventually the original method is invoked again
- For example, method m1 could invoke m2, which invokes m 3 , which in turn invokes m 1 again
- This is called indirect recursion, and requires all the same care as direct recursion
- It is often more difficult to trace and debug

```

