Recursive Programming

« Consider the problem of computing the sum of all
the numbers between 1 and any positive integer N

Recursion _ _ _
« This problem can be recursively defined as:
(part 3)
ii =N + g:i

October 29, 2007

N-2
N + N-1 + >
i=1

I

N3
ComsS 207: Programming | (in Java) N + N-1 + N-2 + Zl
lowa State University, FALL 2007 =1

© 2004 Pearson Addison-Wesley. Allights reserved Instructor: Alexander Stoytchev ©2004p

Recursive Programming Recursive Control Flow

« In Recursive calls methods can call themselves,
but typically with different arguments each time

/1 This method returns the sumof 1 to num
public int sum (int num

{
int result; sum(2) sum(1)
if (num== 1)
result = 1;
el se sum(1);
result = num+ sum (num1);
Iﬁurn 1;
return result;
}

© 2004 Pearson Addison-Wesley. Al rights reserved © 2004 Pearson Addison-Wesley. Al rights reserved

Recursive Control Flow Stack Animation
¢ In Recursive calls methods can call themselves,

 http://acc6.its.brooklyn.cuny.edu/~cis22/
but typically with different arguments each time

animations/tsang/html/STACK/stack1024.html

Mai n() sum(3) sun(2) sun(1)
I ; m(1);
sum(3); sum2); o —
l return 1;

© 2004 Pearson Addison-Wesley. Al rights reserved ©2004 Pearson Addison-Wesley. Al rights reserved

The stack s oo,

durlnga fram_efor

recursive] _‘“‘”‘“0
” arameters) T

call o god

control link

u: (parameters) frame for
v ged(5,0)
control link

t STORE
2008 Pearson Adclson-Wesly, Allihts resgrvt

[http://www. diickinson.edu/~ziantzl/cs500_fall 2002/L ec10/handouts filesimage003.gif]

Memory Organization

CODE AREA STACK

S

HEAP
GLOBAL/STATIC AREA

FRE]

o

© 2004 Pearson Addison-Wesley. All rights resgrved

[http://www.dickinson.edu/~ziantzl/cs500_fall2002/L ec10/handouts files/]

The stack — N Towers of Hanoi
during a N — y
recursive [. The_ Towers of Hanoi is a puzzle ma(_ie up of three
. e 1 1 vertical pegs and several disks that slide on the
call to factorial —
[r— - peg
factonal
pwn 2 * The disks are of varying size, initially placed on
i one peg with the largest disk on the bottom with
il T increasingly smaller ones on top
B s « The goal is to move all of the disks from one peg
[to another under the following rules:
i ke 0 T = We can move only one disk at a time
2 = We cannot move a larger disk on top of a smalleron e
Towers of Hanoi Towers of Hanoi
Origina Configuration Movel Move4 Move5
Move 2 Move 3 Move 6 Move 7 (done)
© 2004 Pearson Addson-Wesley. Al ighs reserved © 2004 Pearson Addson Wesley. All ighs reserved

v ‘ Animation of the Towers of Hanoi

http://www.cs.concordia.ca/~twang/
WangApr01/RootWang.html

} ©2004 Pearson Addison-Wesley. Al rights reserved

Mystery Recursion on HW8

public static void nysteryl(int a, int b)
{
if (a<=0b) {
int m=(a+b) / 2
Systemout.print(m+ " ");
nysteryl(a, m1l);
nysteryl(mtl, b);

}

public static void main(String[] args) {
nysteryl(0, 5);
Systemout.printin();

}

©2004 Pearson Addison-Wesley. Al rights reserved

4 Think of recursion as a tree ...

© 2004 Pearson Addison-Wesley. Al rights reserved

... an upside down tree

© 2004 Pearson Addison-Wesley. Al rights reserved

© 2004 Pearson Addison-Wesley. Al rights reserved

(=0, b=5)

(a=0,

©2004 Pearson Addison-Wesley. Al rights reserved

=4, b=3) (a=5{ b=4)d=6, b=5)

(a=0, b=5)

m=(a+b)2=> print 2}—(2)

Traversa Order (@0, b=9)

Recursion: Fibonacci Numbers

The sequence: {0,1,1,2,3,5,8,13,...}

© 2004 Pearson Addison-Wesley. Al rights reserved

(a=0, b=5)

(a=3, b=5)

©2004 Pearson Addison-Wesley. Al rights reserved

Example: Recursion_Debug.java

© 2004 Pearson Addison-Wesley. Al rights reserved

Mathematical notation v.s. java code

0, n=0
F = 1, n=1
E +Hf, nzl

public static int fib(int n)

if(n <= 1) return n; //base case
elsereturn fib(n-1) + fib(n-2);
}

©2004 Pearson Addison-Wesley. Al rights reserved

Execution Trace Indirect Recursion

| fiolS) » A method invoking itself is considered to be direct
e T recursion
[fib(a) | [fib(3) | .)
R * A method could invoke another method, which
// \\ // \\ invokes another, etc., until eventually the origina |
— — — o method is invoked again
[fib(3) | [fib2) | [fib(2) | [fib(1) |
S T — « For example, method mi could invoke n2, which
// \\ / \\ / \\ invokes n8, which in turn invokes ml again
| fib(2) | | fio(1) | | fis(1) | | fib{o) || fib(1) || fib(0) | e Thisis called indirect recursion, and requires all
VAN the same care as direct recursion
/N

e | (o « Itis often more difficult to trace and debug
| I'l |

© 2004 Pearson Addison-Wesley. Al rights reserved

© 2004 Pearson Addison-Wesley. All rights res

Indirect Recursion Maze Traversal

(e { =]

« We can use recursion to find a path through a
maze

« From each location, we can search in each
direction

« Recursion keeps track of the path through the
maze

* The base case is an invalid move or reaching the
final destination

¢ See MazeSear ch. j ava (page 583)
¢ See Maze. | ava (page 584)

© 2004 Pearson Addison-Wesley. Al rights reserved © 2004 Pearson Addison-Wesley. Al rights reserved

Traversing a maze

——

2004 Pearson Addison-Wesley. Al rights reserved ©2004 Pearson Addison-Wesley. Allrights reserved

© 2004 Pearson Addison-Wesley. Allrights reserved © 2004 Pearson Addison-Wesley. Al rights reserved

THE END

© 2004 Pearson Addison-Wesley. Al rights reserved © 2004 Pearson Addison-Wesley. Al rights reserved

