
1

© 2004 Pearson Addison-Wesley. All rights reserved

October 29, 2007

Recursion
(part 3)

ComS 207: Programming I (in Java)
Iowa State University, FALL 2007
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Recursive Programming

• Consider the problem of computing the sum of all
the numbers between 1 and any positive integer N

• This problem can be recursively defined as:

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Programming

// This method returns the sum of 1 to num

public int sum (int num)

{

int result;

if (num == 1)

result = 1;

else

result = num + sum (num-1);

return result;

}

© 2004 Pearson Addison-Wesley. All rights reserved

sum(1);

sum(1)sum(2)

Recursive Control Flow

• In Recursive calls methods can call themselves,
but typically with different arguments each time

return 1;

© 2004 Pearson Addison-Wesley. All rights reserved

Recursive Control Flow

• In Recursive calls methods can call themselves,
but typically with different arguments each time

sum(2) sum(1)

sum(1);sum(2);

sum(3)Main()

return 1;
sum(3);

© 2004 Pearson Addison-Wesley. All rights reserved

Stack Animation

• http://acc6.its.brooklyn.cuny.edu/~cis22/
animations/tsang/html/STACK/stack1024.html

2

© 2004 Pearson Addison-Wesley. All rights reserved

Memory Organization

[http://www.dickinson.edu/~ziantzl/cs500_fall2002/Lec10/handouts_files/]
© 2004 Pearson Addison-Wesley. All rights reserved

The stack
during a
recursive
call to gcd

[http://www.dickinson.edu/~ziantzl/cs500_fall2002/Lec10/handouts_files/image003.gif]

© 2004 Pearson Addison-Wesley. All rights reserved

The stack
during a
recursive
call to factorial

© 2004 Pearson Addison-Wesley. All rights reserved

Towers of Hanoi

• The Towers of Hanoi is a puzzle made up of three
vertical pegs and several disks that slide on the
pegs

• The disks are of varying size, initially placed on
one peg with the largest disk on the bottom with
increasingly smaller ones on top

• The goal is to move all of the disks from one peg
to another under the following rules:

� We can move only one disk at a time

� We cannot move a larger disk on top of a smaller on e

© 2004 Pearson Addison-Wesley. All rights reserved

Towers of Hanoi

Original Configuration Move 1

Move 3Move 2

© 2004 Pearson Addison-Wesley. All rights reserved

Towers of Hanoi

Move 4 Move 5

Move 6 Move 7 (done)

3

© 2004 Pearson Addison-Wesley. All rights reserved

Animation of the Towers of Hanoi

http://www.cs.concordia.ca/~twang/
WangApr01/RootWang.html

© 2004 Pearson Addison-Wesley. All rights reserved

Mystery Recursion on HW8

public static void mystery1(int a, int b)
{

if (a <= b) {
int m = (a + b) / 2;
System.out.print(m + " ");
mystery1(a, m-1);
mystery1(m+1, b);

}
}

public static void main(String[] args) {
mystery1(0, 5);
System.out.println();

}

© 2004 Pearson Addison-Wesley. All rights reserved

Think of recursion as a tree …

© 2004 Pearson Addison-Wesley. All rights reserved

… an upside down tree

© 2004 Pearson Addison-Wesley. All rights reserved © 2004 Pearson Addison-Wesley. All rights reserved

(a=0, b=5)

(a=0, b=1) (a=3, b=5)

(a=0, b=-1) (a=1, b=1) (a=3, b=3) (a=5, b=5)

(a=1, b=0) (a=2, b=1) (a=3, b=2) (a=4, b=3) (a=6, b=5)(a=5, b=4)

4

© 2004 Pearson Addison-Wesley. All rights reserved

(a=0, b=5)

(a=0, b=1) (a=3, b=5)

(a=0, b=-1) (a=1, b=1) (a=3, b=3) (a=5, b=5)

(a=1, b=0) (a=2, b=1) (a=3, b=2) (a=4, b=3) (a=6, b=5)(a=5, b=4)

2m=(a+b)/2 => print 2

© 2004 Pearson Addison-Wesley. All rights reserved

(a=0, b=5)

(a=0, b=1) (a=3, b=5)

(a=0, b=-1) (a=1, b=1) (a=3, b=3) (a=5, b=5)

(a=1, b=0) (a=2, b=1) (a=3, b=2) (a=4, b=3) (a=6, b=5)(a=5, b=4)

2

0

1 3 5

4

© 2004 Pearson Addison-Wesley. All rights reserved

(a=0, b=5)

(a=0, b=1) (a=3, b=5)

(a=0, b=-1) (a=1, b=1) (a=3, b=3) (a=5, b=5)

(a=1, b=0) (a=2, b=1) (a=3, b=2) (a=4, b=3) (a=6, b=5)(a=5, b=4)

2

0

1 3 5

4

Traversal Order

© 2004 Pearson Addison-Wesley. All rights reserved

Example: Recursion_Debug.java

© 2004 Pearson Addison-Wesley. All rights reserved

Recursion: Fibonacci Numbers

The sequence: {0,1,1,2,3,5,8,13,...}

© 2004 Pearson Addison-Wesley. All rights reserved

Mathematical notation v.s. java code

public static int fib(int n)
{

if(n <= 1) return n; //base case
else return fib(n-1) + fib(n-2);

}

5

© 2004 Pearson Addison-Wesley. All rights reserved

Execution Trace

© 2004 Pearson Addison-Wesley. All rights reserved

Indirect Recursion

• A method invoking itself is considered to be direct
recursion

• A method could invoke another method, which
invokes another, etc., until eventually the origina l
method is invoked again

• For example, method m1 could invoke m2, which
invokes m3, which in turn invokes m1 again

• This is called indirect recursion, and requires all
the same care as direct recursion

• It is often more difficult to trace and debug

© 2004 Pearson Addison-Wesley. All rights reserved

Indirect Recursion

m1 m2 m3

m1 m2 m3

m1 m2 m3

© 2004 Pearson Addison-Wesley. All rights reserved

Maze Traversal

• We can use recursion to find a path through a
maze

• From each location, we can search in each
direction

• Recursion keeps track of the path through the
maze

• The base case is an invalid move or reaching the
final destination

• See MazeSearch.java (page 583)
• See Maze.java (page 584)

© 2004 Pearson Addison-Wesley. All rights reserved

Traversing a maze

© 2004 Pearson Addison-Wesley. All rights reserved

6

© 2004 Pearson Addison-Wesley. All rights reserved © 2004 Pearson Addison-Wesley. All rights reserved

© 2004 Pearson Addison-Wesley. All rights reserved © 2004 Pearson Addison-Wesley. All rights reserved

THE END

