
1

© 2004 Pearson Addison-Wesley. All rights reserved

November 2, 2007

Class Relationships

ComS 207: Programming I (in Java)
Iowa State University, FALL 2007
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

No Class on Monday Nov 5

• Due to night exam last week (midterm 2)

© 2004 Pearson Addison-Wesley. All rights reserved

Final Exam

• When: Thursday, December 13, 2007
• Where: Curtiss Hall, room 127 (classroom)
• Time: 4:30-6:30pm

• Also see this page (for large classes like ComS 207) :
• http://www.iastate.edu/~registrar/exams/groups.shtm l

• NOTE: The time listed on this page
does **NOT** apply to ComS207!!!

• http://www.iastate.edu/~registrar/exams/

© 2004 Pearson Addison-Wesley. All rights reserved

Example: Sudoku_Solver.java

© 2004 Pearson Addison-Wesley. All rights reserved

Solving Sudoku Puzzles With Recursion
(http://www.websudoku.com/)

© 2004 Pearson Addison-Wesley. All rights reserved

Rule #1: 1..9 must be in each row

2

© 2004 Pearson Addison-Wesley. All rights reserved

Sample that satisfies rule #1

1 9 3 2 8

© 2004 Pearson Addison-Wesley. All rights reserved

Rule #2: 1..9 must be in each column

© 2004 Pearson Addison-Wesley. All rights reserved

Sample that satisfies rules #1 and #2

1 9 3 2 8

8

3

6

9

© 2004 Pearson Addison-Wesley. All rights reserved

Rule #3: 1..9 must be in each 3x3 window

© 2004 Pearson Addison-Wesley. All rights reserved

Sample that satisfies rules #1, #2, and #3

1 9 3 2 8

8

3

6

9

6

5

© 2004 Pearson Addison-Wesley. All rights reserved

Quick Review of Last Lecture

3

© 2004 Pearson Addison-Wesley. All rights reserved

Visibility Modifiers

public private

Variables

Methods
Provide services

to clients

Support other
methods in the

class

Enforce
encapsulation

Violate
encapsulation

© 2004 Pearson Addison-Wesley. All rights reserved

The static Modifier

• We declare static methods and variables using the
static modifier

• It associates the method or variable with the class
rather than with an object of that class

• Static methods are sometimes called class
methods and static variables are sometimes called
class variables

© 2004 Pearson Addison-Wesley. All rights reserved

Static Variables

• Normally, each object has its own data space, but
if a variable is declared as static, only one copy of
the variable exists

private static float price;

• Memory space for a static variable is created
when the class is first referenced

• All objects instantiated from the class share its
static variables

• Changing the value of a static variable in one
object changes it for all others

© 2004 Pearson Addison-Wesley. All rights reserved

Classes

• A class can contain data declarations and method
declarations

int size;
int weight;

Data declarations

Method declarations

© 2004 Pearson Addison-Wesley. All rights reserved

Objects – instances of classes

int size =5;
int weight= 170;

int size =10;
int weight= 130;

obj1 obj2

© 2004 Pearson Addison-Wesley. All rights reserved

Note that the variables can have
different values in the two objects

int size =5;
int weight= 170;

int size =10;
int weight= 130;

obj1 obj2

4

© 2004 Pearson Addison-Wesley. All rights reserved

Classes

• Things change if we declare a static variable

static int size;
int weight;

Data declarations

Method declarations

© 2004 Pearson Addison-Wesley. All rights reserved

Objects – instances of a class with a
static variable ‘size’

int weight= 170; int weight= 130;

obj1 obj2

static int size;

© 2004 Pearson Addison-Wesley. All rights reserved

Objects – instances of classes

• Note that the variables can have different values i n
the two objects

int size =5;
int weight= 170;

int size =10;
int weight= 130;

© 2004 Pearson Addison-Wesley. All rights reserved

Static Class Members

• The order of the modifiers can be interchanged,
but by convention visibility modifiers come first

• Recall that the main method is static – it is invoked
by the Java interpreter without creating an object

• Static methods cannot reference instance
variables because instance variables don't exist
until an object exists

• However, a static method can reference static
variables or local variables

© 2004 Pearson Addison-Wesley. All rights reserved

myMethod();

myMethodcompute

Method Control Flow

• If the called method is in the same class, only the
method name is needed

© 2004 Pearson Addison-Wesley. All rights reserved

myMethod();

myMethodcompute

Accessing Variables

• If the called method is in the same class, only the
method name is needed

int myVariable;

myVariable=5; OK

5

© 2004 Pearson Addison-Wesley. All rights reserved

myMethod();

myMethodcompute

Accessing Variables

• Static methods cannot use non static class
variables.

int myVariable;

myVariable=5; Error

static

© 2004 Pearson Addison-Wesley. All rights reserved

myMethod();

myMethodcompute

Accessing Variables

• Static methods can use static class varables

static int myVariable;

myVariable=5; OK

static

© 2004 Pearson Addison-Wesley. All rights reserved

Static Class Members
• Recall that a static method is one that can be

invoked through its class name

• For example, the methods of the Math class are
static:

result = Math.sqrt(25);

• Variables can be static as well

• Determining if a method or variable should be
static is an important design decision

© 2004 Pearson Addison-Wesley. All rights reserved

Static Methods

class Helper
{

public static int cube (int num)
{

return num * num * num;
}

}

Because it is declared as static, the method
can be invoked as

value = Helper.cube(5);

© 2004 Pearson Addison-Wesley. All rights reserved

Class Helper

static cube static helpMe

helpMe();Helper.cube();

main

Method Control Flow

• Static methods can only call other static methods
within the same classs

Chapter 6

Section 6.4

6

© 2004 Pearson Addison-Wesley. All rights reserved

Class Relationships

• Classes in a software system can have various
types of relationships to each other

• Three of the most common relationships:

� Dependency: A uses B

� Aggregation: A has-a B

� Inheritance: A is-a B

© 2004 Pearson Addison-Wesley. All rights reserved

Dependency

• A dependency exists when one class relies on
another in some way, usually by invoking the
methods of the other

• We've seen dependencies in many previous
examples

• We don't want numerous or complex
dependencies among classes

• Nor do we want complex classes that don't depend
on others

• A good design strikes the right balance

© 2004 Pearson Addison-Wesley. All rights reserved

Dependency Example: Client-Server

© 2004 Pearson Addison-Wesley. All rights reserved

Dependency
• Some dependencies occur between objects of the

same class

• A method of the class may accept an object of the
same class as a parameter

• For example, the concat method of the String
class takes as a parameter another String object

str3 = str1.concat(str2);

• This drives home the idea that the service is being
requested from a particular object

© 2004 Pearson Addison-Wesley. All rights reserved

concat(String s)

Concatenation Example

str1 str2

concat(String s)

© 2004 Pearson Addison-Wesley. All rights reserved

Dependency
• The following example defines a class called
Rational to represent a rational number

• A rational number is a value that can be
represented as the ratio of two integers

• Some methods of the Rational class accept
another Rational object as a parameter

• See RationalTester.java (page 297)
• See Rational.java (page 299)

7

© 2004 Pearson Addison-Wesley. All rights reserved

Aggregation

• An aggregate is an object that is made up of other
objects

• Therefore aggregation is a has-a relationship

� A car has a chassis

� A student has an address

© 2004 Pearson Addison-Wesley. All rights reserved

Aggregation Example: Components of a Car

© 2004 Pearson Addison-Wesley. All rights reserved

Chasis

© 2004 Pearson Addison-Wesley. All rights reserved

Tyres

© 2004 Pearson Addison-Wesley. All rights reserved

Steering Wheel

© 2004 Pearson Addison-Wesley. All rights reserved

What type of Steering Wheel?

8

© 2004 Pearson Addison-Wesley. All rights reserved

Car Seat

© 2004 Pearson Addison-Wesley. All rights reserved

Aggregation

• In software, an aggregate object contains
references to other objects as instance
data

• The aggregate object is defined in part by
the objects that make it up

• This is a special kind of dependency – the
aggregate usually relies on the objects that
compose it

© 2004 Pearson Addison-Wesley. All rights reserved

Aggregation Example:
Copmonents of a Student

© 2004 Pearson Addison-Wesley. All rights reserved

Student

Home Address School Address

First Name Last Name

© 2004 Pearson Addison-Wesley. All rights reserved

john

21 Jump Street 800 Lancaster Ave.

John Smith

© 2004 Pearson Addison-Wesley. All rights reserved

marsha

123 Main Street 800 Lancaster Ave.

Marsha Jones

9

© 2004 Pearson Addison-Wesley. All rights reserved

Aggregation in UML

StudentBody

+ main (args : String[]) : void

+ toString() : String

Student

- firstName : String
- lastName : String
- homeAddress : Address
- schoolAddress : Address

+ toString() : String

- streetAddress : String
- city : String
- state : String
- zipCode : long

Address

© 2004 Pearson Addison-Wesley. All rights reserved

Aggregation

• In the following example, a Student object is
composed, in part, of Address objects

• A student has an address (in fact each student has
two addresses)

• See StudentBody.java (page 304)
• See Student.java (page 306)
• See Address.java (page 307)

• An aggregation association is shown in a UML
class diagram using an open diamond at the
aggregate end

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

