
1

© 2004 Pearson Addison-Wesley. All rights reserved

November 12, 2007

Inheritance

ComS 207: Programming I (in Java)
Iowa State University, FALL 2007
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Quick Review of Last Lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Passing Arguments

• Another important issue related to method design
involves parameter passing

• Parameters in a Java method are passed by value

• A copy of the actual parameter (the value passed
in) is stored into the formal parameter (in the
method header)

• Therefore passing parameters is similar to an
assignment statement

© 2004 Pearson Addison-Wesley. All rights reserved

Passing Arguments

• Always done using “Pass By Value”

© 2004 Pearson Addison-Wesley. All rights reserved

Example: PassByValue.java

© 2004 Pearson Addison-Wesley. All rights reserved

Variable Assignment Revisited

• The act of assignment takes a copy of a value and
stores it in a variable

• For primitive types:

num1 38

num2 96
Before:

num2 = num1;

num1 38

num2 38
After:

2

© 2004 Pearson Addison-Wesley. All rights reserved

Parameter Passing (primitive types)

• The act of passing an argument takes a copy of a
value and stores it in a local variable acessible
only to the method which is being called.

num1 38Before:

void myMethod(int num2)
{

num2 =50;

}

{
int num1=38;

myMethod(num1);

}

num1 38After:

num2 38Before:

num2 50After:

© 2004 Pearson Addison-Wesley. All rights reserved

Objects and Reference Variables

acct1 72354acctNumber

102.56balance

name “Ted Murphy”

acct2 69713acctNumber

40.00balance

name “Jane Smith”

© 2004 Pearson Addison-Wesley. All rights reserved

References

• Note that a primitive variable contains the value
itself, but an object variable contains the address
of the object

• An object reference can be thought of as a pointer
to the location of the object

• Rather than dealing with arbitrary addresses, we
often depict a reference graphically

"Steve Jobs"name1

num1 38

© 2004 Pearson Addison-Wesley. All rights reserved

Reference Assignment

• For object references, assignment copies the
address:

name2 = name1;

name1

name2
Before:

"Steve Jobs"

"Steve Wozniak"

name1

name2
After:

"Steve Jobs"

© 2004 Pearson Addison-Wesley. All rights reserved

Aliases

• Two or more references that refer to the same
object are called aliases of each other

• That creates an interesting situation: one object
can be accessed using multiple reference
variables

• Aliases can be useful, but should be managed
carefully

• Changing an object through one reference
changes it for all of its aliases, because there is
really only one object

© 2004 Pearson Addison-Wesley. All rights reserved

Parameter Passing (objects)
• Objects (in this case arrays) are also passed by

value. In this case, however, the value is the
address of the object pointed to by the reference
variable.

void myMethod(int[] b)
{

b[0]+=5;

}

{
int[] a={5, 7};

myMethod(a);

}

aBefore: 5
7

aAfter: 10
7

bBefore: 5
7

bAfter: 10
7

3

© 2004 Pearson Addison-Wesley. All rights reserved

In the previous example there is only
one array and two references to it.

a 5
7

b

© 2004 Pearson Addison-Wesley. All rights reserved

The array can be modified through
either reference.

a 10
7

b

© 2004 Pearson Addison-Wesley. All rights reserved

Figure 6.5

© 2004 Pearson Addison-Wesley. All rights reserved

Objects as Parameters

• When an object is passed to a method, the actual
parameter and the formal parameter become
aliases of each other

© 2004 Pearson Addison-Wesley. All rights reserved

Passing Objects to Methods

• What a method does with a parameter may or may
not have a permanent effect (outside the method)

• See ParameterTester.java (page 327)

• See ParameterModifier.java (page 329)

• See Num.java (page 330)

• Note the difference between changing the internal
state of an object versus changing which object a
reference points to

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overloading

• Method overloading is the process of giving a
single method name multiple definitions

• If a method is overloaded, the method name is not
sufficient to determine which method is being
called

• The signature of each overloaded method must be
unique

• The signature includes the number, type, and
order of the parameters

4

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overloading

• The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x)
{

return x + .375;
}

float tryMe(int x, float y)
{

return x*y;
}

result = tryMe(25, 4.32)

Invocation

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overloading

• The println method is overloaded:

println (String s)

println (int i)

println (double d)

and so on...

• The following lines invoke different versions of th e
println method:

System.out.println ("The total is:");

System.out.println (total);

© 2004 Pearson Addison-Wesley. All rights reserved

Overloading Methods

• The return type of the method is not part of the
signature

• That is, overloaded methods cannot differ only by
their return type

• Constructors can be overloaded

• Overloaded constructors provide multiple ways to
initialize a new object

Chapter 8

Section 8.1

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance

• Inheritance is a fundamental object-oriented
design technique used to create and organize
reusable classes

• Chapter 8 focuses on:

� deriving new classes from existing classes
� the protected modifier
� creating class hierarchies
� abstract classes
� indirect visibility of inherited members
� designing for inheritance
� the GUI component class hierarchy
� extending listener adapter classes
� the Timer class

© 2004 Pearson Addison-Wesley. All rights reserved
[http://cas.bellarmine.edu/tietjen/images/Mammal_order_tree.jpg]

5

© 2004 Pearson Addison-Wesley. All rights reserved

Animals Class Hierarchy

[http://www.scs.leeds.ac.uk/ugadmit/cogsci/tech/egtree.gif]
© 2004 Pearson Addison-Wesley. All rights reserved

Animals Class Hierarchy

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance Example

Man Woman

Abstract
Person

© 2004 Pearson Addison-Wesley. All rights reserved

Condo

Mansion

5 bedroom
house

Abstract
Home

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance

• Inheritance allows a software developer to derive a
new class from an existing one

• The existing class is called the parent class, or
superclass, or base class

• The derived class is called the child class or
subclass

• As the name implies, the child inherits
characteristics of the parent

• That is, the child class inherits the methods and
data defined by the parent class

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance
• Inheritance relationships are shown in a UML class

diagram using a solid arrow with an unfilled
triangular arrowhead pointing to the parent class

Vehicle

Car

• Proper inheritance creates an is-a relationship,
meaning the child is a more specific version of the
parent

6

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance

• A programmer can tailor a derived class as needed
by adding new variables or methods, or by
modifying the inherited ones

• Software reuse is a fundamental benefit of
inheritance

• By using existing software components to create
new ones, we capitalize on all the effort that went
into the design, implementation, and testing of the
existing software

© 2004 Pearson Addison-Wesley. All rights reserved

Deriving Subclasses

• In Java, we use the reserved word extends to
establish an inheritance relationship

• See Words.java (page 440)
• See Book.java (page 441)
• See Dictionary.java (page 442)

class Car extends Vehicle

{

// class contents

}

© 2004 Pearson Addison-Wesley. All rights reserved

Class Diagram for Words

Book

pages : int

+ pageMessage() : void

Dictionary

- definitions : int

+ definitionMessage() : void

Words

+ main (args : String[]) : void

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

