Inheritance

November 12, 2007

ComsS 207: Programming | (in Java)
lowa State University, FALL 2007
© 2004 Pearson Addison-Wesley. Al rights reserved Instructor: Alexander Stoytchev

Quick Review of Last Lecture

©2004 Pearson Addison-Wesley. Al rights reserved

Passing Arguments

« Another important issue related to method design
involves parameter passing

« Parameters in a Java method are passed by value

« A copy of the actual parameter (the value passed
in) is stored into the formal parameter (in the
method header)

* Therefore passing parameters is similar to an
assignment statement

© 2004 Pearson Addison-Wesley. Al rights reserved

Passing Arguments

« Always done using “Pass By Value”

© 2004 Pearson Addison-Wesley. Al rights reserved

Example: PassByValue.java

© 2004 Pearson Addison-Wesley. Al rights reserved

Variable Assignment Revisited

* The act of assignment takes a copy of a value and
stores it in a variable

« For primitive types:

numl
Before: um2

num2 = numi;

numl
numz2

After:

©2004 Pearson Addison-Wesley. Al rights reserved

Parameter Passing (primitive types)

« The act of passing an argument takes a copy of a
value and stores it in a local variable acessible
only to the method which is being called.

{ : :
int num1=38: \{/0|d myMethod(int num2)
Before: num1 Before: num2
myMethod(num1);

num2 =50;

After: numl After: num2
’)

© 2004 Pearson Addison-Wesley. Al rights

Objects and Reference Variables

T ——
acctl El—' acctNumber

7
balance
name —’—a[“Ted Murphy”]
.~ =

56
T /N
acct2 El—' acctNumber
balance
e _’_H [“Jane Smith”]

‘earson Addison-Wesley. Al rights reserved

References

* Note that a primitive variable contains the value
itself, but an object variable contains the address
of the object

« An object reference can be thought of as a pointer
to the location of the object

« Rather than dealing with arbitrary addresses, we
often depict a reference graphically

numl

© 2004 Pearson Addison-Wesley. Al rights reserved

Reference Assignment

« For object references, assignment copies the
address:

Before: _

name2 = namel;

names [}
After:
name2 El—/

© 2004 Pearson Addison-Wesley. Al rights reserved

Aliases

« Two or more references that refer to the same
object are called aliases of each other

« That creates an interesting situation: one object
can be accessed using multiple reference
variables

« Aliases can be useful, but should be managed
carefully

« Changing an object through one reference
changes it for all of its aliases, because there is
really only one object

2004 Pearson Addison-Wesley. Al rights reserved

Parameter Passing (objects)

« Objects (in this case arrays) are also passed by
value. In this case, however, the value is the
address of the object pointed to by the reference
variable.

int] a=(5, 7} z/oid myMethod(int[] b)

Before: a E'—' Before: b E—'

myMethod(a);

After: @ E—‘ After: b E'—'
| 7] | 7]

b[0]+=5;

}

©2004 Pearson Addison-Wesley. Al rights reserved

In the previous example there is only
one array and two references to it.

© 2004 Pearson Addison-Wesley. All rights reserved

The array can be modified through
either reference.

©2004 Pearson Addison-Wesley. Al rights reserved

F|gure 6.5 O
][] [obofm] [m] [odefen] [ol
X X [1] E
I w =]

[][] [odefum] ool

« & a PR -
s [F“"’ [!
[L4 | [

srs s
) [otefm]][] [odefm] [oefis
9%)

1 o XX X

© 2004 Pearson Addison-Wesley. Al rights reserved

Objects as Parameters

« When an object is passed to a method, the actual
parameter and the formal parameter become
aliases of each other

© 2004 Pearson Addison-Wesley. Al rights reserved

Passing Objects to Methods

* What a method does with a parameter may or may
not have a permanent effect (outside the method)

* See ParameterTester.java (page 327)

* See ParameterModifier.java (page 329)

* See Num.java (page 330)

* Note the difference between changing the internal
state of an object versus changing which object a
reference points to

© 2004 Pearson Addison-Wesley. Al rights reserved

Method Overloading

* Method overloading is the process of giving a
single method name multiple definitions

« If a method is overloaded, the method name is not
sufficient to determine which method is being
called

* The signature of each overloaded method must be
unique

* The signature includes the number, type, and
order of the parameters

©2004 Pearson Addison-Wesley. Al rights reserved

Method Overloading

* The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x)
{ Invocation

} LEUMBG LTS result = tryMe(25, 4.32)

float tryMe(int x, float y)

return x*y;

© 2004 Pearson Addison-Wesley. All rights reserved

Overloading Methods

* The return type of the method is not__ part of the
signature

* That s, overloaded methods cannot differ only by
their return type

« Constructors can be overloaded

* Overloaded constructors provide multiple ways to
initialize a new object

© 2004 Pearson Addison-Wesley. Al rights reserved

Inheritance

« Inheritance is a fundamental object-oriented
design technique used to create and organize
reusable classes

* Chapter 8 focuses on:

deriving new classes from existing classes
the protected modifier

creating class hierarchies

abstract classes

indirect visibility of inherited members
designing for inheritance

the GUI component class hierarchy
extending listener adapter classes

the Timer class

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overloading

¢ The printin method is overloaded:

printin (String s)
printin (int i)
printin (double d)

and so on...

« The following lines invoke different versions of th e
printin method:

System.out.printin (“The total is:");
System.out.printin (total);

©2004 Pearson Addison-Wesley. Al rights reserved

Chapter 8

©2005 Pearson Addison-Wesley. Al rights reserved.

.

- Mogos Group CARNNORES s
Toothed Whales |, ™ eayﬂ 5
~ Whales p=2
Guinéd Pig, ;
Group
&
1,
Squirel Group
fLuN E
RODENTS
\ e
¥ PRIMATES < 2
4 Q&»’@ ‘;’\ PANGOLIN

' R
/_\ ZN S ;I/f_'\\
INSECTIVO/RE 2] %

ST?CK

<35
PERISSODACTYLS

BATS AARDVARK

EDENTATES

Figure 55. Diagrammatic family trec of the major orders (and some suborders) of eutherian
(placental) mammals. Separate diagrams (Figs. 57-61) give in more detail the evolution of
Primates, carnivores, and odd- and even-toed ungulates.

©2004 Pearson Addison-Wesley. Al rights B

ﬂﬁeﬁ://casbdIamine.ethiajaVimaqe_s/Manmal order_tree;jpg]

4 Animals Class Hierarchy

animal
mammal bird
live
furoﬁspring beak _ feathers
wings

© 2004 Pearson Addison-Wesley. Allrights reserved

[http://www.scs|eeds.ac.uk/ugadmit/cogsci/tech/egtree.gif

Inheritance Example

Abstract

Person

4

Man

© 2004 Pearson Addison-Wesley. Al rights reserved

Inheritance

« Inheritance allows a software developer to derive a
new class from an existing one

« The existing class is called the parent class, or
superclass, or base class

* The derived class is called the child class or
subclass

« As the name implies, the child inherits
characteristics of the parent

« That s, the child class inherits the methods and
data defined by the parent class

2004 Pearson Addison-Wesley. Al rights reserved

» Animals Class Hierarchy

Animal
o
|
Reptile Bird . Mammal
> r Snake Lizard Parrot | Horse Bat

©2004 Pearson Addison-Wesley. Al rights reserved

Abstract
Home

o |
. ! il
=%
s s
5 bedroom
house

© 2001 Pearson Addison Wesiey Al ghis eserved N\ g ON

Inheritance

« Inheritance relationships are shown in a UML class
diagram using a solid arrow with an unfilled
triangular arrowhead pointing to the parent class

/\
Car

« Proper inheritance creates an is-a relationship,
meaning the child is a more specific version of the
parent

©2004 Pearson Addison-Wesley. Al rights reserved

Inheritance

« A programmer can tailor a derived class as needed
by adding new variables or methods, or by
modifying the inherited ones

* Software reuse is a fundamental benefit of
inheritance

* By using existing software components to create
new ones, we capitalize on all the effort that went
into the design, implementation, and testing of the
existing software

© 2004 Pearson Addison-Wesley. Allrights reserved

Deriving Subclasses

« In Java, we use the reserved word
establish an inheritance relationship

class Car extends Vehicle

{

/I class contents

}

* See Words.java (page 440)
* See Book.java (page 441)
» See Dictionary.java (page 442)

©2004 Pearson Addison-Wesley. Al rights reserved

extends to

Class Diagram for Words

Book
pages : int

+ pageMessage() : void

T

Words F-=> Dictionary

- definitions : int

+ main (args : String[]) : void
erg o) + definitionMessage() : void

© 2004 Pearson Addison-Wesley. Al rights reserved

THE END

© 2004 Pearson Addison-Wesley. Al rights reserved

