Inheritance
(part 2)

November 14, 2007

ComsS 207: Programming | (in Java)
lowa State University, FALL 2007
© 2004 Pearson Addison-Wesley. All rights reserved Instructor: Alexander Stoy{chev

Quick Review of Last Lecture

©2004 Pearson Addison-Wesley. Al rights reserved

Parameter Passing (primitive types)

* The act of passing an argument takes a copy of a
value and stores it in a local variable acessible
only to the method which is being called.

{))
int num1=38; void myMethod(int num2)
Before: numi1 Before: num2
myMethod(num1);

num2 =50;
After: numi After: num2
} }

© 2004 Pearson Addison-Wesley. Al rights reserved

T ——
acctl El—’ acctNumber

h
balance
name —}a[“Ted Murphy”]
.~ —

o ————)
acct2 El—’ acctNumber
balance

e _’_4.[“Jane Smith”]

© 2004 Pearson Addison-Wesley. Al rights reserved

Parameter Passing (objects)

« Objects (in this case arrays) are also passed by
value. In this case, however, the value is the
address of the object pointed to by the reference
variable.

void myMethod(int[] b)

int[] a={5, 7}; {
Before: a E'—' Before: b E—>
! b[0]+=5;
myMethod(a); J

After: b E'—‘
L7]

© 2004 Pearson Addison-Wesley. Al rights reserved

In the previous example there is only
one array and two references to it.

©2004 Pearson Addison-Wesley. Al rights reserved

The array can be modified through
either reference.

© 2004 Pearson Addison-Wesley. All rights reserved

Method Overloading

¢ The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x)
{ Invocation

} [ELIREEETS: result = tryMe(25, 4.32)

float tryMe(int X, float y)

return x*y;

©2004 Pearson Addison-Wesley. Al rights reserved

Method Overloading

* The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x) [signature 1] tryMe: int
{

return x + .375;
}

float tryMe(int x, float y) [signature 2] tryMe: int, floal

return x*y;

}

© 2004 Pearson Addison-Wesley. Al rights reserved

Method Overloading

¢ The printin method is overloaded:

printin (String s)
printin (int i)
printin (double d)

and so on...

* The following lines invoke different versions of th
printin method:

System.out.printin (“The total is:");
System.out.printin (total);

© 2004 Pearson Addison-Wesley. Al rights reserved

Inheritance

« Inheritance is a fundamental object-oriented
design technique used to create and organize
reusable classes

* Here is a quick analogy

© 2004 Pearson Addison-Wesley. Al rights reserved

Inheritance

©2004 Pearson Addison-Wesley. Al rights reserved

Inheritance

© 2004 Pearson Addison-Wesley. Al rights reserved

Inheritance

© 2004 Pearson Addison-Wesley. Al rights reserved

Inheritance

In class hierarchiesthe
Inheritance arrow usually
points up instead of down.

© 2004 Pearson Addison-Wesley. All rights reserved

Inheritance

©2004 Pearson Addison-Wesley. Al rights reserved

What can be inherited in Java?

©2004 Pearson Addison-Wesley. Al rights reserved

©2005 Pearson Addison-Wesley. Al rights reserved.

Inheritance

« Inheritance allows a software developer to derive a
new class from an existing one

* The existing class is called the parent class, or
superclass, or base class

* The derived class is called the child class or
subclass

* As the name implies, the child inherits
characteristics of the parent

« That s, the child class inherits the methods and
data defined by the parent class

© 2004 Pearson Addison-Wesley. Allrights reserved

Inheritance

« Inheritance relationships are shown in a UML class
diagram using a solid arrow with an unfilled
triangular arrowhead pointing to the parent class

/\
Car

« Proper inheritance creates an is-a relationship,
meaning the child is a more specific version of the
parent

©2004 Pearson Addison-Wesley. Al rights reserved

Inheritance
Class Hierarchy Objects

Vehicle v1 = new Vehicle()

/\

Car c1 = new Car();
Car Car c2 = new Car();
Car ¢3 = new Car();

© 2004 Pearson Addison-Wesley. Al rights reserved

Inheritance

« A programmer can tailor a derived class as needed
by adding new variables or methods, or by
modifying the inherited ones

* Software reuse is a fundamental benefit of
inheritance

« By using existing software components to create
new ones, we capitalize on all the effort that went
into the design, implementation, and testing of the
existing software

© 2004 Pearson Addison-Wesley. Al rights reserved

Deriving Subclasses

« InJava, we use the reserved word extends to
establish an inheritance relationship

class Car extends Vehicle

{

/I class contents

}

> 2004 Pearson Addison-Wesley. Al rights reserved

Book & Dictionary Example

« See Words.java (page 440)
* See Book.java (page 441)
« See Dictionary.java (page 442)

©2004 Pearson Addison-Wesley. Al rights reserved

Class Diagram for Words

Book
pages : int

+ pageMessage() : void

T

Words F-=> Dictionary

- definitions : int

+ main (args : String[]) : void

+ definitionMessage() : void

2004 Pearson Addison-Wesley. Al rights reserved

public class Dictionary extends Book

private int definitions = 52500;

A

6.

public double computeRatio ()

{
return definitions/pages;
public void setDefinitions (int numDefinitions)

definitions = numDefinitions;

}
public int getDefinitions ()

return definitions;

}

©2004 Pearson Addison-Wesley. Allrights reserved

public class Dictionary extends Ei X
{

rivate int_definitions = 52500;

INHERITED

public double computeRatio ()
{ return definitions/pages; }

public void setDefinitions (int numDefinitions)
{ definitions = numDefinitions; }

public int getDefinitions ()
{ return definitions; }

} ¢ 200 peasson adson westey. Al g resrvea

public class Book

{
protected int pages = 1500;
public void setPages (int numPages)
{
pages = numPages;
}
public int getPages ()
{
return pages;
}
}

© 2004 Pearson Addison-Wesley. Al rights reserved

' public class Dictionary extends Book

private int definitions = 52500;

public double computeRatio ()
{ return definitions/pages; }

public void setDefinitions (int numDefinitions)
{ definitions = numDefinitions; }

public int getDefinitions ()
{ return definitions; }

} 2004 Pearson adcson-wesie. Al igtisreserved

The protected Modifier

« Visibility modifiers affect the way that class
members can be used in a child class

« Variables and methods declared with private
visibility cannot be referenced by name in a child
class

* They can be referenced in the child class if they
are declared with public visibility -- but public
variables violate the principle of encapsulation

* There is a third visibility modifier that helps in
inheritance situations: protected

© 2004 Pearson Addison-Wesley. Al rights reserved

The protected Modifier

* The protected modifier allows a child class to

Appendix E

Modifier Classes and Iinterfaces Methods and variahles

r’ fauit (no m‘aama;) Visible in its package. Visible 1o any class n the same peckage as its class.
i

| public Visible anywhere. Visible anywhere.

|

. protected N/A Visible by any olass in the same package as its class.

private Visible to the enclosing Not visible by any other class.
class only

© 2004 Pears

Addison-Wesley. Allrights reserved

sary since implementation
is in another angusge

reference a variable or method directly in the chil d
class
< It provides more encapsulation than public
visibility, but is not as tightly encapsulated as
private visibility
« A protected variable is visible to any class in the
same package as the parent class
~* The details of all Java modifiers are discussed in
. Appendix E
« Protected variables and methods can be shown
with a # symbol preceding them in UML diagrams
2004 Pearson Adcison Wesley. All ights reseved
Modifier Class Interface Method Varlable
abstract | The class may con- | All inter faces are No method body is N/A
| tain abstract meth- | inherently abstract. |defined. The method
ods. It cannot be The modifier is requires implementation
instantiated. optional when inherited.
final The class cannot be | N/A The methed cannot be The variable is a constant,
used to drive new overridden. whose value cannot be
classes. changed once initially set.
native | N/A N/A Mo method bedy is neces- | N/A

static | N/A N/A Defines a class method. It | Defines a olass variable. It
daes not require an instan- | does not require an instan-
tiated object o be invoked. |tited object to be refer-
It cannot reference nan- enced. It is shared (com-
static methods or variables. | mon memory space) among
It is implicitly final. all instances of the class.
synchro- | /A /A The execution of the /A
bized method is mutually exclu-
sive among all threads.
transient | n/a N/A N/A The variable will not
be serialized.
volatlle | N/ N/A N/A The variable is changed
asynchronously. The
compiler should not
perform optimizations
on it.
©2004 Pearson Addison-Wesley. Al rights reserved

The super Reference
« Constructors are not inherited, even though they

have public visibility

* Yet we often want to use the parent's constructor
to set up the "parent's part" of the object

* The super reference can be used to refer to the
parent class, and often is used to invoke the
parent's constructor

© 2004 Pearson Addison-Wesley. Al rights reserved

The super Reference

« A child’s constructor is responsible for calling th
parent’s constructor

« The first line of a child’s constructor should use
the super reference to call the parent’s
constructor

« The super reference can also be used to reference
other variables and methods defined in the
parent’s class

2004 Pearson Addison-Wesley. Al rights reserved

e

this

© 2004 Pearson Addison-Wesley. Al rights reserved

Super super super

this this this

© 2004 Pearson Addison-Wesley. Al rights reserved ©2004 Pearson Addison-Wesley. Allrights reserved

Modified Book Example

* See Words2.java _ (page 445)
* See Book2.java (page 446)
» See Dictionary2.java (page 447)

© 2004 Pearson Addison-Wesley. Al rights reserved

© 2004 Pearson Addison-Wesley. Al rights reserved

Multiple Inheritance Multiple Inheritance

« Java supports single inheritance, meaning that a
derived class can have only one parent class

PickupTruck

(not allowed in Java)

« Multiple inheritance allows a class to be derived
from two or more classes, inheriting the members
of all parents

« Collisions, such as the same variable name in two
parents, have to be resolved

« Java does not support multiple inheritance

« In most cases, the use of interfaces gives us
aspects of multiple inheritance without the
overhead

©2004 Pearson Addison-Wesley. Al rights reserved

© 2004 Pearson Addison-Wesley. Al rights reserved

This example shows how multiple

Recessive inheritance . . L
Analogy inheritance can be faked in java

carrier O] ——
o @fméw W7o
E[I Z Nn N Nn J java.lang.Ru lil i
: 5 i lang.Runnable
,&,I,; ,8 ,8 g . " java.lang.Object : <<interface>>

NORMAL CARRIER CARRIER AFFECTED

Dominant inheritance extends <<implements>>
Affected ° @ Normal
Father nuu Jﬂ n\mmmgr A Q .
0 1]

dd D| Dd Dd

AFFECTED NORMAL AFFECTED NORMAL

© 2004 Pearson Addison-Wesley. Al rights reserved ©2004 Pearson Addison-Wesley. Allrights resery

Fﬁtp://www.vs' -co.uk/pix/articleimages/may05/javathread3.jpg)

THE END

© 2004 Pearson Addison-Wesley. Al rights reserved

