
1

© 2004 Pearson Addison-Wesley. All rights reserved

November 28, 2007

Polymorphism
(part 2)

ComS 207: Programming I (in Java)
Iowa State University, FALL 2007
Instructor: Alexander Stoytchev © 2004 Pearson Addison-Wesley. All rights reserved

Quick Review of Last Lecture

© 2004 Pearson Addison-Wesley. All rights reserved

Abstract Classes

• An abstract class is a placeholder in a class
hierarchy that represents a generic concept

• An abstract class cannot be instantiated

• We use the modifier abstract on the class
header to declare a class as abstract:

public abstract class Product

{

// contents

}

© 2004 Pearson Addison-Wesley. All rights reserved

Abstract Classes
• An abstract class often contains abstract methods

with no definitions (like an interface)

• Unlike an interface, the abstract modifier must be
applied to each abstract method

• Also, an abstract class typically contains non-
abstract methods with full definitions

• A class declared as abstract does not have to
contain abstract methods -- simply declaring it as
abstract makes it so

© 2004 Pearson Addison-Wesley. All rights reserved

Abstract Classes

• The child of an abstract class must override the
abstract methods of the parent, or it too will be
considered abstract

• An abstract method cannot be defined as final or
static

• The use of abstract classes is an important
element of software design – it allows us to
establish common elements in a hierarchy that are
too generic to instantiate

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism in Nature

[http://www.blackwellpublishing.com/ridley/images/h_erato.jpg]

2

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism

• The term polymorphism literally means "having
many forms"

• A polymorphic reference is a variable that can
refer to different types of objects at different
points in time

• The method invoked through a polymorphic
reference can change from one invocation to the
next

• All object references in Java are potentially
polymorphic

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism via Inheritance

© 2004 Pearson Addison-Wesley. All rights reserved

References and Inheritance

• An object reference can refer to an object of its
class, or to an object of any class related to it b y
inheritance

• For example, if the Holiday class is used to derive
a class called Christmas , then a Holiday reference
could be used to point to a Christmas object

Holiday day;
day = new Christmas();

Holiday

Christmas

© 2004 Pearson Addison-Wesley. All rights reserved

Binding
• Consider the following method invocation:

obj.doIt();

• At some point, this invocation is bound to the
definition of the method that it invokes

• If this binding occurred at compile time, then that
line of code would call the same method every
time

• However, Java defers method binding until run
time -- this is called dynamic binding or late
binding

• Late binding provides flexibility in program design

© 2004 Pearson Addison-Wesley. All rights reserved

References and Inheritance

• Assigning a child object to a parent reference is
considered to be a widening conversion, and can
be performed by simple assignment

• Assigning an parent object to a child reference can
be done also, but it is considered a narrowing
conversion and must be done with a cast

• The widening conversion is the most useful

© 2004 Pearson Addison-Wesley. All rights reserved

Example: Animals class hierarchy

• Animal.java

• Cow.java

• Duck.java

• Dog.java

• Farm.java

3

© 2004 Pearson Addison-Wesley. All rights reserved

You can use jGrasp to draw
diagram like this one

© 2004 Pearson Addison-Wesley. All rights reserved

Class
Hierarchy

© 2004 Pearson Addison-Wesley. All rights reserved

public abstract class Animal
{

abstract void makeSound();
}

public class Cow extends Animal
{

public void makeSound()
{

System.out.println("Moo-Moo");
}

}

public class Dog extends Animal
{

public void makeSound()
{

System.out.println(“Wuf-Wuf");
}

}

public class Duck extends Animal
{

public void makeSound()
{

System.out.println(“Quack-Quack");
}

}

© 2004 Pearson Addison-Wesley. All rights reserved

public class Farm
{

public static void main(String[] args)
{

Cow c=new Cow();
Dog d=new Dog();
Duck k= new Duck();

c.makeSound();
d.makeSound();
k.makeSound();

}
}

Result:
Moo-Moo
Wuf-Wuf
Quack-Quack

© 2004 Pearson Addison-Wesley. All rights reserved

public class Farm2
{

public static void main(String[] args)
{

Animal[] a = new Animal[3];

a[0] = new Cow();
a[1] = new Dog();
a[2] = new Duck();

for(int i=0; i< a.length; i++)
a[i].makeSound();

}
}

Result:
Moo-Moo
Wuf-Wuf
Quack-Quack © 2004 Pearson Addison-Wesley. All rights reserved

a

4

© 2004 Pearson Addison-Wesley. All rights reserved

a

Not possible since
Animal is abstract © 2004 Pearson Addison-Wesley. All rights reserved

But if we add
more classes
to the Class
hierarchy

© 2004 Pearson Addison-Wesley. All rights reserved

a

We can do this…

© 2004 Pearson Addison-Wesley. All rights reserved

public abstract class Animal
{

abstract void makeSound();
public void move()
{

System.out.println(“walk”);
}

}

public class Cow extends Animal
{

public void makeSound()
{

System.out.println("Moo-Moo");
}

}

public class Dog extends Animal
{

public void makeSound()
{

System.out.println(“Wuf-Wuf");
}

}

public class Duck extends Animal
{

public void makeSound()
{

System.out.println(“Quack-Quack");
}

}

Define a new
method called
move(). It is not
abstract and will
be inherited by all
children of Animal.

© 2004 Pearson Addison-Wesley. All rights reserved

public class Farm2b
{

public static void main(String[] args)
{

Animal[] a = new Animal[3];

a[0] = new Cow();
a[1] = new Dog();
a[2] = new Duck();

for(int i=0; i< a.length; i++)
a[i].move();

}
}

Result:
walk
walk
walk © 2004 Pearson Addison-Wesley. All rights reserved

public abstract class Animal
{

abstract void makeSound();
public void move()
{

System.out.println(“walk”);
}

}

public class Cow extends Animal
{

public void makeSound()
{

System.out.println("Moo-Moo");
}

}

public class Dog extends Animal
{

public void makeSound()
{

System.out.println(“Wuf-Wuf");
}

}

Override the move
method defined in
the Animal class.

public class Duck extends Animal
{

public void makeSound() {
System.out.println(“Quack-Quack");

}
public void move() {

System.out.println(“fly”);
}

}

5

© 2004 Pearson Addison-Wesley. All rights reserved

public class Farm2c
{

public static void main(String[] args)
{

Animal[] a = new Animal[3];

a[0] = new Cow();
a[1] = new Dog();
a[2] = new Duck();

for(int i=0; i< a.length; i++)
a[i].move();

}
}

Result:
Walk
Walk
Fly

Chapter 9

Section 9.1 & 9.2

© 2004 Pearson Addison-Wesley. All rights reserved

public abstract class Animal
{

abstract void makeSound();
public void move()
{

System.out.println(“walk”);
}

}

public class Cow extends Animal
{

public void makeSound()
{

System.out.println("Moo-Moo");
}

}

public class Dog extends Animal
{

public void makeSound()
{

System.out.println(“Wuf-Wuf");
}

}

Only Ducks
can dive.

public class Duck extends Animal
{

public void makeSound() {
System.out.println(“Quack-Quack");

}
public void move() {

System.out.println(“fly”);
}
public void dive() {

System.out.println(“Diving…");
}

}
© 2004 Pearson Addison-Wesley. All rights reserved

public class Farm2d
{

public static void main(String[] args)
{

Animal[] a = new Animal[3];

a[0] = new Cow();
a[1] = new Dog();
a[2] = new Duck();

for(int i=0; i< a.length; i++)
a[i].dive();

}
}

Compile Error, since dive() is defined
only for Duck objects and not for all
objects derived from Animal.

© 2004 Pearson Addison-Wesley. All rights reserved

public class Farm2d
{

public static void main(String[] args)
{

Animal[] a = new Animal[3];

a[0] = new Cow();
a[1] = new Dog();
a[2] = new Duck();

((Duck)a[2]).dive();
}

}

This works OK, but requires a cast
from a reference to Animal to
a reference to Duck.

© 2004 Pearson Addison-Wesley. All rights reserved

public class Farm2d
{

public static void main(String[] args)
{

Animal[] a = new Animal[3];

a[0] = new Cow();
a[1] = new Dog();
a[2] = new Duck();

((Duck)a[2]).dive();
}

}

Result:
Diving…

6

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism via Inheritance

• Now let's look at an example that pays a set of
diverse employees using a polymorphic method

• See Firm.java (page 486)
• See Staff.java (page 487)
• See StaffMember.java (page 489)
• See Volunteer.java (page 491)
• See Employee.java (page 492)
• See Executive.java (page 493)
• See Hourly.java (page 494)

© 2004 Pearson Addison-Wesley. All rights reserved

Firm Class Hierarchy

© 2004 Pearson Addison-Wesley. All rights reserved

Employee
Class
Hierarchy Chapter 9

Section 9.3

© 2004 Pearson Addison-Wesley. All rights reserved

Interface Hierarchies
• Inheritance can be applied to interfaces as well as

classes

• That is, one interface can be derived from another
interface

• The child interface inherits all abstract methods o f
the parent

• A class implementing the child interface must
define all methods from both the ancestor and
child interfaces

• Note that class hierarchies and interface
hierarchies are distinct (they do not overlap)

© 2004 Pearson Addison-Wesley. All rights reserved

This example shows how multiple
inheritance can be faked in java

[http://www.vsj.co.uk/pix/articleimages/may05/javathread3.jpg]

7

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism via Interfaces

• An interface name can be used as the type of an
object reference variable

Speaker current;

• The current reference can be used to point to any
object of any class that implements the Speaker
interface

• The version of speak that the following line
invokes depends on the type of object that
current is referencing

current.speak();

© 2004 Pearson Addison-Wesley. All rights reserved

Polymorphism via Interfaces

• Suppose two classes, Philosopher and Dog, both
implement the Speaker interface, providing
distinct versions of the speak method

• In the following code, the first call to speak
invokes one version and the second invokes
another:

Speaker guest = new Philospher();

guest.speak();

guest = new Dog();

guest.speak();

© 2004 Pearson Addison-Wesley. All rights reserved

The Animals
example with
interfaces

implements
implements

implements

In this case
Animal is an
interface.

© 2004 Pearson Addison-Wesley. All rights reserved

public interface Animal
{

public void makeSound();
}

public class Cow implements Animal
{

public void makeSound()
{

System.out.println("Moo-Moo");
}

}

public class Dog implements Animal
{

public void makeSound()
{

System.out.println(“Wuf-Wuf");
}

}

public class Duck implements Animal
{

public void makeSound()
{

System.out.println(“Quack-Quack");
}

}

© 2004 Pearson Addison-Wesley. All rights reserved

public class iFarm
{

public static void main(String[] args)
{

Animal domestic;

domestic = new Cow();
domestic.makeSound();

domestic = new Dog();
domestic.makeSound();

domestic = new Duck();
domestic.makeSound();

}
}

Result:
Moo-Moo
Wuf-Wuf
Quack-Quack © 2004 Pearson Addison-Wesley. All rights reserved

public interface Animal
{

public void makeSound();
public void move();

}

public class Cow implements Animal
{

public void makeSound() {
System.out.println("Moo-Moo");

}
public void move() {

System.out.println(“walk");
}

}

public class Dog implements Animal
{

public void makeSound() {
System.out.println(“Wuf-Wuf");

}
public void move() {

System.out.println(“walk");
}

}

Define a new method
called move().
Because Animal is
an interface this
method cannot
be defined as in the
previous example in
which Animal was
an abstract class.

public class Duck implements Animal
{

public void makeSound() {
System.out.println(“Quack-Quack");

}
public void move() {

System.out.println(“fly");
}

}

Replicated
code!!!

The only move()
method that is
different from
the rest.

8

© 2004 Pearson Addison-Wesley. All rights reserved

public class iFarm2
{

public static void main(String[] args)
{

Animal domestic;

domestic = new Cow();
domestic.move();

domestic = new Dog();
domestic.move();

domestic = new Duck();
domestic.move();

}
}

Result:
walk
walk
fly © 2004 Pearson Addison-Wesley. All rights reserved

public interface Animal
{

public void makeSound();
public void move();

}

public class Cow implements Animal
{

public void makeSound() {
System.out.println("Moo-Moo");

}
public void move() {

System.out.println(“walk");
}

}

public class Dog implements Animal
{

public void makeSound() {
System.out.println(“Wuf-Wuf");

}
public void move() {

System.out.println(“walk");
}

}

public class Duck implements Animal
{

public void makeSound() {
System.out.println(“Quack-Quack");

}
public void move() {

System.out.println(“fly");
}
public void dive() {

System.out.println(“Diving…");
}

}

Only Ducks
can dive().

© 2004 Pearson Addison-Wesley. All rights reserved

public class iFarm3
{

public static void main(String[] args)
{

Animal domestic;

domestic = new Cow();
//domestic.dive(); // error

domestic = new Dog();
//domestic.dive(); // error

domestic = new Duck();
// domestic.dive(); // error

((Duck)domestic).dive(); // OK, but uses a cast

}
}

Result:
Ducks can dive.

© 2004 Pearson Addison-Wesley. All rights reserved

THE END

