CS 401 Semester Project

Guitar Teaching Application

Stephen Choi, Bradley Koch, Jason Michl, David Waszgis

Table of Contents

Introduction ___3
Our Plan ___3
What we did __4
How we did it ___5
Screen Shots __6
Testing __
Experimental Results ___
Successes/Failures ___
Conclusion ___
Learning how to learn to play the guitar is a hard thing to do. Many people first learning how to play the guitar give up right away because of how hard it is to learn. It is very frustrating when you can’t figure out what to do or why you are doing it wrong. We feel that it would be easier to learn the guitar if there was a more visual interactive way. This new way of learning has to give feedback when you are playing.
Our Plan
Our idea/overall plan was to have an easier way of learning how to play the guitar. When we first started we wanted to have an application that would listen to what you have played and would show you what you are doing wrong. The user would be able to see on a screen the notes that he has played and the notes that he has played wrong. It would also show the user the right way to play the note. Our hopes were to come up with a more visual way of learning the guitar. Having the ability to see what you are doing wrong right in front of your eyes.
Another benefit of using our application was that you wouldn’t be spending all that money for a music instructor. You will be able to learn in the comfort of your own home. You can just install our application to your computer and play your music through a microphone hooked up to your computer. You will be able to do this anywhere you have a computer. Our application is a fun and easy way to learn how to play the guitar.

What We Did
Our original goal was to find a microphone API, write an audio analysis package for it, use this package to map audio input to fretwork, and send this fretwork data to our GUI, which displays it on screen. This turned out to be more difficult than we anticipated; we found a large number of candidates, most of which turned out to be incompatible with our systems for one reason or another.

Eventually, we found an open source C# program, SoundViewer, that met our requirements – it received audio input and performed analysis on it, outputting the results to a graph. We modified SoundViewer’s code so that it would return fretwork data. On a properly-tuned guitar, each frequency corresponds to multiple positions on multiple strings; this was of very little consequence, however. These positions are far enough apart that only one string position is really viable for a particular chord.
The program we found, SoundViewer, works fairly well, but it has some noticeable problems with accuracy. These can be alleviated somewhat by experienced guitarists, who can press strongly upon the strings. In a sense, then, this does help encourage better guitar playing, but at the moment we still see it as a bug instead of a feature. As this report is being submitted, we continue to work at improving the accuracy of our modified program.
How We Did It
[image: image1.png]mic input

FFT

frequency

GUI

Fast Fourier Transform

In order to distinguish between notes, it is necessary to recognize pitch or the fundamental frequency of the note. Out of many other pitch detection algorithms (PDA), Fast Fourier Transform (FFT) is one of the most efficient algorithms. Though his frequency-domain approach of PDA requires more processing power, it allows us to detect polyphonic notes; whereas the time-domain approaches can’t.
// add the GUI part
Screenshots
[image: image2.emf]

This shows some of the modified SoundViewer code. SoundViewer is an open-source C# program that displays time and frequency domains as a graph. Our modifications remove the graph and analyze the frequency directly, translating it as fingerwork.

SoundViewer (as well as its source code) can be found at http://www.codeproject.com/cs/media/SoundViewer.asp.

Information on proper note frequencies can be found at http://www.phy.mtu.edu/~suits/notefreqs.html.

[image: image3.emf]

This shows the console output from our modifications. The output is self-explanatory: on a long stringed instrument like a guitar, you can achieve the same sound with different fretwork on different strings. For example, on a properly tuned guitar, the 1st fret of the 5th string (the A string) sounds like the 6th fret of the 6th string (the low E string). This is reflected on the console with the string “5A1 / 6E6”. The far left side of the console shows approximate frequencies.

[image: image4.emf]

This screenshot shows our GUI as it is viewed in Visual Studio. The fret lines, etc, are added through code rather than being manually placed within the GUI.

[image: image5.emf]

This is a picture of the program during execution. At the moment, the user has a dialog box open, and is loading up a tablature (TBS) file.

[image: image6.emf]

Now, the program has loaded up a tablature file and is displaying the first measure. For testing purposes, the user must manually go to the next tab.

[image: image7.emf]

This is the same tablature file, moved on to the second measure.
Testing

After we finished implementing our system we wanted to test it out on as many people as we could. We wanted to get feedback on its usefulness, ease of use and whether or not our subjects would use our system to learn the guitar. Our idea number was to test between ten and twenty subjects. We ended up testing ourselves as well as eight of our friends. This will give us at least eight good non biased opinions about our system. We started our testing process by … after they were done we asked them a handful of questions about their experience with it. We told them to keep in mind that our system was still a little rough and with more time would improve. Our questions covered three areas and we asked them to rank on a scale from one to five.
Experimental Results

We got a lot of useful feedback from our test subjects. With our feedback we were able to compare our subjects thoughts.
	1
	Not likely

	2
	Some what not likely

	3
	I might

	4
	Some what likely

	5
	Absolutely

[image: image8.emf]Would They Use

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5

Number of Test

Subjects

Rating

Would They Use

	1
	Very hard

	2
	Some what hard

	3
	Neutral

	4
	Some what easy

	5
	Very easy

[image: image9.emf]Ease of Use

0

1

2

3

4

5

6

1 2 3 4 5

Number of Test

Subjects

Rating

Ease of Use

	1
	Very un-useful

	2
	Some what un-useful

	3
	Neutral

	4
	Some what useful

	5
	Very useful

[image: image10.emf]Usefulness

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5

Number of Test

Subjects

Rating

Usefulness

Successes / Failures

After getting feedback from our test subjects, looking at our proposal and comparing our original idea to our system we feel we were a success. We had three goals that we wanted to meet when we first started our project. They were whether or not we would get the pitch recognition working correctly. If we could get our tablature transitions working at the correct time. Finally, if we could give the proper feedback to the user. We feel that we successfully did two of these with one a work still in progress. The one that needs more work would be the pitch recognition. We are at a point to where it works but not as well as we hoped. Right now it only works for basic notes. With more time we feel that this could get our project reading more advanced notes.

If we could start over there are some things that we would do different. We would put more effort into developing the sound input recognition portion. It took more time than we thought that it would. It would have been helpful to have completed it earlier because we needed it for other parts of our system. We spent a lot of time tinkering with open source libraries before we found one that we could adapt to work with our own needs and would integrate with our GUI efficiently. Now that we have this part done all that is left to do would be do further development and enhance the GUI so that it emulates a more realistic guitar experience. After completing the pitch recognition portion we weren’t able to move as far with the GUI as we had hoped. But we feel that it displays the core idea and working of our proposed project. We feel that our system is now a good base for further development.
None of us have ever worked with any sound input like this. We were basically learning as we were going for every part of our project. What we have learned from this whole experience is a new and interesting way of handling input, the difficulties of implementing a highly interactive interface and knowledge of GUI’s in general.
PAGE
6

