Tracking Humans Using a Distributed Array of Motorized

Monocular Cameras.

Abstract: Blob tracking was performed on two concurrent PTZ video
feeds to graph motion history. Tactics to bypass

proprietary protocols used with PTZ are discussed.

With our software you are able to minimize operator time by employing the power of a computer
to automatically track humans moving within an area with a distributed monocular motorized
camera array. Movement can then be represented on a historical perspective in which paths are
highlighted; enabling the viewer to make informed placement decisions. Additionally, the
system would minimize the learning curve for a distributed array of motorized cameras by

maintaining field of view data for all cameras.
Target Audience:

The primary target of the application would be for surveillance for both security and athletic
entertainment. Possible surveillance applications range from theft prevention systems used in
retail environment to locating infant children at home. The system could also be optimized to

track non-human objects such as motor vehicles.

Equipment used

Our solution will utilized existing motorized network cameras on the ISU campus. The software
is written to run on any machine equipped with OpenCV. No actions were made to comprise the

cameras for future use. The cameras are Canon VB-50i.



Approach

Canon webcams are serviced with a software package called WebView. Webview uses a
propitiatory protocol called WV-TCP/HTTP. WYV protocol encapsulates the video, audio,
coordinates and requests between the camera and a client. Given is proprietary nature we were
left with two avenues. Acquire and use software specifically written to interact with the camera

or develop our own. Clearly we choose to purse locating a download of the Canon

Three tactics where used to acquire the Canon Video LAN SDK kit. First the web-based request
form was entered. Then a follow up email was to customer support asking why I didn’t receive
my authentication email. Then several calls where placed to customer support. Finally several
calls were placed to sale representatives with the notion that a perspective customer wanted to
preview the SDK prior to purchasing sixteen cameras. As with the previous emails every
attempt failed. The requests would be forwarded to someone else who ‘would be able to help’.

Eventually the request would reach someone who either didn’t reply or didn’t know what to do.

Additional attempts to proceed in difficulty. Reverse engineering the dynamically linked
libraries included with the publicly available Client Viewer, screen wrapping the Client Viewer
and finally screen casting the Client Viewer. The Client Viewer provides non-authenticated
client to control the cameras for a short period of time. The user is able to see the PTZ

coordinates, video stream, and audio stream.

Reverse Engineering DLLs

In an effort to obtain programmical control of the Canon webcam attempts were made to
decompile the dynamically linked libraries. DLL or dynamically linked library is a standard for
precompiled functions to be shared between processes. Often DLL libraries are non-encrypted;

they can then be decompiled to the logical equivalent of original source code. However



knowledge of the original code is desired since the absence of names and documentation make
readably not intuitive. The only information I had was seven filenames similar to

‘LVTCPCamCon.dII’. Hence this approach endured for just a week before moving on.

Create own network stack with PCAP Library

PCAP is a library used to for encapsulating and decapsulating data in packets. My plan was to
sniff enough packets that I could determine the protocol and then create my own interface to
manipulate the camera. Analysis of the packets exchange revealed no obvious structure. The
real-time nature of these packets made decoding them difficult since each packet contained a

continually changing timecode and ID.

Screen Wrap Client Viewer

Screen Wrapping the Client Viewer would entail capturing the video on screen and using
keyboard shortcuts to send commands. VideoLan commonly known as VLC is capable of screen
casting, capturing video from on screen and then transcoding to another format. WebView
Client Viewer accepts keyboard shortcuts: arrow keys, + (plus) & - (minus) for pan, tilt, zoom.
However the problem with this approach would be acquiring confirmation that a command to
move the camera was successful. To do this we would have to read the PTZ coordinates then
covert them to text with an OCR. Hence the program would be highly inefficient, overly
complex and of limited value as future editions of WebView are released. Additionally it was
learned that C++ does not handle key commands the same as higher languages like VB and java.
The interface and type of keyboard affect how commands are sent. Already complete libraries

do exist, however this does little to mitigate the complexities of this approach.



Screen Cast Client Viewer

Instead of going directly to a screen wrap. It was decided to start simple and first do a screen

cast. VLC was used with the given commands:

screen:// :screen-fps=29.001 :dshow-fps=29.001 :nooverlay
:sout=#transcode{vcodec=mp2v, vb=10240, scale=1}

:duplicate{dst=std{access=file, mux=mpegl,dst="D:\ouput2.mpeg"}}

Then the client viewer was set full screen and the cameras were manually manipulated via the
keyboard shortcuts. Although less functional then what the project initially called for, this
approach the most results this late in the project. Therefore we decided to hold off on controlling
the camera for now and focus on motion history. Until I can complete the PCAP stack or get the

SDK.

Motion history

Motion history is the continued detection of a specific objerect over time. To do this OpenCV is
equipped with blob detection and face recognition. The problem with face detection is the
limited haar cascades. Much of the emphasis with OpenCV was placed on single angle face
detection. Instead blob detection works with the edges and surface area of an object independent
of a precompiled haar. Therefore by creating an overlay matrix where the object was last located
and then adding that to the next frame it is possible to create a history. The problem with this
approach would be PTZ movement, but if we know the PTZ coordinates we could mitigate for
movement and assume that if the camera moves into a new field of view that the overlay would

have to be reinitiated.

Additionally this approach would also provide a bases for motion history and indirectly velocity.

The very strengths also served as weaknesses when dealing with noise. To eliminate false



triggers a max velocity was implemented, in which objects that moved more than a specified

number of pixels would be rejected.

Alternative Cameras

Among other options we considered were other networked webcams. Network sniffing showed
these cameras actively using the wireless network. Their MAC addresses are identified as being

Panasonic. Upon initial setup Panasonic cameras ask for a default password.

129.186.126.8
129.186.93.33
129.186.93.32
129.186.54.202
129.186.54.204
129.186.115.253
10.10.33.49

10.10.52.46
129.186.65.45
129.186.65.41
129.186.126.9
129.186.65.129
129.186.65.117
129.186.235.240

Undisclosed ISU Campus

10.10.80.14




10.10.80.15

Wichita, Kansas Downtown Skyscraper with cameras on either side

68.110.223.198

129.186.95.226

This is one viewing Alumni Hall.

129.186.168.78

This is the Veterinary Medicine building.




129.186.47.55

And this one is of the Memorial Union.

Mem Union Morth Sat Dec 1

129.186.4.41 and 129.186.8.46

Differences:

When we were planning the project, we intended to have a map of where motion had taken place

and have different colors represent the speed of motion of an object. However, in our current



program, we were forced to make it all just 1 color, and the map of all motion is stored in a video

file.

Previous Approaches:

Motion tracking is a well developed area of computer vision. Current technology allows for real-

time tracking and recognition of a person or object.

The earliest developments which used a distributed array of cameras was in the late 90’s.
Approaches have sense been developed for both an overlapping and non-overlapping array of
fixed cameras. Little development has been made with motorized cameras in a distributed array.

Standardization with PTZ functionality has not been implemented.

Q. Cai and J.K. Aggarwal, “Tracking Human Motion Using Multiple Cameras,” Proc. Int"l Conf.

Pattern Recognition, pp. 68-72, Vienna, Austria, Aug. 1996.

Q. Cai and J.K. Aggarwal. Tracking human motion in structured environments

using a distributed-camera system. IEEE Transactions on Pattern Analysis and



