Ryan Murphy and Brandon Miller

Computer Science 401

Professor Alex Stoytchev

Decomercializer

30 November 2007

¿Introducción?

We are both pleased with how our program turned out. We were able to implement most all of the features we intended. Some of the less important features were even included, for example, we made a fancy GUI. Our algorithms turned out to work better than we expected. As it turns out, black-screens generally last longer when they are separating commercials rather than scenes within a show. So this turned out to be an extremely affective method of segmenting the video. Unfortunately, commercials are not all about the same length, as we had previously been led to expect. We were under the impression that most all commercials lasted 30 or 60 seconds. Perhaps this used to be the case before programs like ours came along. While they may not have a uniform length, they are most always under a certain length, which we were able to use to our advantage. We originally were afraid that detecting transparent logos would be a very difficult task, and so were going to add the extra criterion that the videos we test on must have opaque logos. But we came up with a solution that allows videos with transparent logos. This solution will be explained in more detail later. We both sincerely hope you enjoy our paper.

TARGET AUDIENCE

Our target audience is anyone who views TV files on a computer and is incredibly irritated with watching commercials. It is simple to use so little computer knowledge will be required. This software is limited to people who use Windows based Operating Systems. Users will need to have a pretty modern computer system in order to process the information in a small amount of time. This product works on all types of TV programs regardless of content.

NECESSITY

Most viewers of recorded programs already fast-forward through the commercials. This can be an annoyance when watching the program and having to constantly push the fast-forward button. Additionally one must wait until the commercials are over and try not to fast-forward past the commercials. If you do happen to fast-forward past the commercials, then you must rewind back to the start of the program...etc. It's just incredibly annoying, and now there is a solution to fix the problem.

In addition to annoyance alleviation, a user can now easily prepare their favorite TV programs to be burnt onto DVDs. Certainly if the video is important enough to be burnt onto DVD, then one is not going to want to have to fast-forward through commercials every time it is presented to an audience. Also, if the video is to be shared with friends, via some peer-to-peer service, it’s courteous to remove the commercials first.

EQUIPMENT

The equipment that is necessary to use this software are video files of TV programs which can be recorded using TV tuner cards to record TV programs for the input. Additionally, end users can record a video on their DVR and transfer it to their computer, then use our program. We chose to use OpenCV to create this software as well as the software from ATI for our TV tuner cards to record the TV programs.

VOID MAIN()

Since we use OpenCV for our program it was necessary to include the libraries available for download from the Internet. This allows us to do many operations on the frames of a video which we extract each frame separately and do different calculations. The first part of our program reads through each frame of the video and checks for screens that are near black which we will go into more detail about later. Between the actual TV show and commercials a black screen or at least a fade occurs. This divides the video into segments of the actual TV show and commercial, but from this data alone we can not tell which is a commercial and what is the actual TV show. Since we now know the different segments of the video, we pass these segments through different algorithms to detect which segments should be kept and which ones should be deleted. From this information we write the output video by writing the segments which were marked to be kept and skipping over the sequences of the video that were marked to be deleted.

ALGORITHMS

Here are the algorithms we implemented:

Black screen detection

· Find the black frames contained in the video by calculating the color histogram(see Color histogram for further details)

· Calculate the time elapsed between these black frames

· Add these segments to a list by specifying the beginning and ending frame numbers

· If the time of the video segment is greater than two minutes, mark the segment for keeping since commercials will not be greater than two minutes

· If the time of the video segment is less than thirty seconds, mark the segment for removal since segments with less than thirty seconds will most likely be commercials

· If the time of the video segment is less than two minutes and greater than thirty seconds run the video segment on the other detection algorithms explained below

Color histogram

· [image: image1.emf]Convert each frame to a grayscale image

· Calculate the color histogram of each grayscale image finding the occurrence of each shade of gray

· Sum the number of pixels less than a certain threshold of gray to detect pixels that are “near black” i.e. pixels range from 0 to 255 so find pixels less than 10

· If the sum of these “near black” pixels is greater than a certain percentage of the total pixels, then a black screen is detected

Logo detection

· Start from a point that is close to the bottom-right-hand corner of the video. This is determined based on the size of the video.

· [image: image2.emf]Scan diagonally downward toward the bottom-right-hand corner, until a pixel is detected that has a low color variance. Store this pixel’s location.

· We scan this pixel for a span of 100 frames. During this process, the color variance is calculated for Blue, Green, and Red, respectively. This is done by:

· Get the pixel’s previous color

· Get the pixel’s current color

· Take the absolute value of the difference between its current value and its former value, and then square this

· Add this to the color’s previous color variance

· Once 100 frames have passed, then take the square root of this value

· If this value is above a certain amount, then the color at that location has been fluctuating too much to be a logo

· Calculate the mean color at the location of the pixel that has been detected to be a part of the logo

· While this is being done, we ensure that this is indeed a logo by checking the blue-color value at the location in question.

· If this blue-color value deviates too much from its former value (on the previous frame), then we continue scanning, because it is probably not part of the logo

· Whenever this pixel remains within a certain range of this color, the logo is present

· If a logo is detected and this video segment was previously considered to be a commercial, then it's probably not, so we change it to be part of the output video

· If a logo is not present in a segment we’re unsure of, then we remove the segment

DATA STRUCTURES

Our program takes as input video files that are of the AVI file-type. We use OpenCV, so the video is split up into frames. A vector of structures is used for a number of pixels that are located toward the bottom-left-hand side of the screen. We decided to use a vector for this so that it can be any length. That is, since the size of the videos can vary, and we detect where to begin detecting for the logo based upon a percentage of the width (and height), we also needed to make the size of this data to vary. So, for this reason, the push_back function of vectors was desirable. The structures that comprise this vector contain data about the line of pixels toward the corner of the video. It includes the x and y position of the pixel; the blue, green and red color values; the previous blue, green and red color values (for calculating variance); the variance for each of these colors; and the total variance (the sum of each of the colors' variances). To calculate the mean value of the logo’s color, an array is used with three values; one for each of the color spectra. To segment the video based on black screen detection we use a structure that contains the starting frame, the ending frame and a variable stating whether or not to keep this frame in the outputted video.

USER INTERFACE

[image: image3.emf]
The user interface is so simple to use that even a child can use it. The only thing that the user will need to specify is the location of the input file that they want to convert and the name of the output file. The input will be a video file with commercials and the output will be the same video file with the commercials removed. Our program will make sure the input file exists since trying to open files that do not exist causes errors. It will also check that if the output file already exists then it will check that the user wants to replace this file. Our program also checks that the input and output file name are not the same since this would cause problems of reading and writing the same file simultaneously which could yield undesirable results. Since the program can take some time to run without displaying anything to the user, we have a progress bar show up on the screen so the user does not think that the program froze up. We decided to keep the user interface fairly simple since we want users to be able to use this software with very little computer knowledge.

TESTING

We each recorded a bunch of programs of different types (cartoons, movies, sports) and then checked the accuracy of our program with the expected results. That is, we manually determined when the commercials occurred and then check this with the resulting output of our program. We also used specific test cases, for example we made a video comprised of nothing but commercials and our program detected them all. Similarly we used a video that had no commercials and it outputted the exact same video as the input.

This was a difficult problem so we were not aiming for perfection. We hoped to maximize the accuracy of our commercial detection, but we also realized that for certain programs it may be different. We checked each of our detection methods for a maximal accuracy in detecting the commercials. We were aiming for when we combined them all, the result was the majority of the commercials removed, and should contain no removal of the actual TV program.

We ran our software on many different TV programs and calculated the overall accuracy. We achieved our goal of a majority of commercials removed on each of these test-cases.

While running our tests on the different TV programs we adjusted our algorithms so that they would detect commercials correctly. If one of our algorithms did not correctly detect commercials, then we would modify it to hopefully improve the accuracy.

�

These rectangles surround the pixels that are scanned.

