
Enabling Simple Window Management Using
Pinch Gesture Recognition

ComS 401 Final Project

Benjamin Baldus

Debra Lauterbach

Juan Lizarraga

Abstract

In this project, we developed a machine-user interface which implements
pinch gesture recognition using simple computer vision techniques. The
interface allows the user to use their hands to control the mouse as well
as easily move and resize windows that are open on their screen. This
interface is simple enough to be run using an ordinary webcam and
requires little training.

1. Motivation & need for the application

The use of only basic input devices such as the mouse and keyboard is limiting
the creativity and capabilities of the user. Our goal with this project was to
expand the ways that people are able to interact with their computers. Namely,
we wanted to enable users to interact more naturally with their computer through
using simple hand gestures to move the mouse and perform tasks.

One task which is especially cumbersome to perform with the mouse is moving
and resizing open windows. This is something that many computer users do
quite often - opening several applications, folders, browser windows, etc. on their
screen, and then switching between them frequently. But, on most computers,
the only way to move a window is by clicking and dragging it by its header/title
bar, and the only way to resize is by clicking and dragging on the bottom-right
corner. This can be annoying to do for managing multiple windows, which is the
problem that our application aims to solve.

Performing gestures with the hands over the keyboard is a natural place for
interaction, since the hands are often already over the keys. That way, the user
can quickly transition from typing to performing gestures. The gesture we use, of
bringing the thumb and forefinger together (“pinching”) is a simple gesture that
can be easily recognized using computer vision techniques. The hole created by
a pinch can be detected using simple image segmentation and connected
components analysis, instead of having to use complicated hand-tracking
algorithms and hand shape recognition techniques.

Figure 1: Traditional moving and resizing of windows requires clicking in a
specific place in the window (Left image). Our project allows moving and
resizing by clicking anywhere in the window (Right image).

These hand gestures can be recognized in real time, and once a pinch is
recognized, measurements can be found for its movement and orientation.
These measurements can then be translated into mouse events, letting the user
control the cursor and easily move and resize windows by selecting anywhere in
a window, instead of just the title bar or bottom-right corner.

1.1. Target audience

Anyone with a computer and a camera should be able to take full advantage
of this program. However, our main target audience is advanced computer
users, since these are the users who are most likely to have many windows
open, requiring frequent window management. They are also probably the
most likely to want to use a cutting-edge application such as this.

However, since this application has a relatively small learning curve, it should
be easy for any type of user to master and use it effectively.

1.2. Previous approaches

Hand gesture recognition for computer control is a popular research topic in
computer vision. The first research on in the area began in about 1992, when
it first became possible to grab images from a camera in real time, and thus
enable effective human-computer interaction. Research in the area has
typically fallen within the categories of applications for pointing, presenting,
digital desktops, virtual workbenches, and virtual reality. In all cases, the

motivation has been to create convenient, intuitive, powerful means of
interaction with a computer that can serve as an alternative to the traditional
keyboard and mouse.

Approaches to recognizing hand gestures have usually been divided into two
types: model-based and view-based approaches. Model-based approaches
use a 3D hand model for tracking, which has many more potential
applications, but is a challenging task. The main problems are that it works
well only for relatively slow hand motions, and in constrained environments
(Stenger, 2006). View-based approaches, however, use pattern classification
to identify hand features and determine the current hand pose. The main
challenges in this case are to find how to segment the hand from the
background, and how to determine which features to extract from the
segmented region. Segmentation is often done using skin color detection and
segmenting this from a uniform background.

Figure 2: Some previous research approaches, using data gloves, edge
detection, and skin color segmentation.

For both approaches, tactics to help in recognizing hand gesture input
include:

- using props or input devices, such as a pen or data glove
- restricting the object information, as through a silhouette of the hand
- restricting the recognition situation, by using a uniform background
- restricting the set of gestures made, and using only one hand (Lenman,

Bretzner & Thuresson, 2002)

Cursor Control

Several applications for cursor control have been created using 2D tracking.
These methods all use a single camera to track a hand, and have typically
used pointing gestures as the means of replacing the mouse. An early
example is Finger Mouse (Quek, Mysliwjec & Zhao, 1995), which used a
camera to view the hand from above and recognize hand gestures to control
the mouse. One drawback of this system was that the user had to press the
shift key with their other hand in order to ‘click’, making the system not
completely gesture-based. Later applications found ways to solve this
problem and create click gestures, such as O’Hagan (1997) who defined
clicking as when two fingers were extended, and von Hardenberg and Berard
(2001) who defined clicking as when a one second delay in hand movement
occurred.

1.3. Related work

While previous applications have used complicated model or view-based
approaches to do hand gesture tracking, the goal of our project is to
implement this in a simpler, more intuitive way. We also are to studying
strictly hand gestures that are done over the keyboard instead of away from
the computer, since this is a more natural and easy place to use gestures. To
fulfill these goals, we based our project off of the research of Andy Wilson of
Microsoft Research, who has created a way to detect pinching gestures over
the keyboard using simple image processing techniques.

Wilson’s technique makes use of the fact that the keyboard (in his case, a
common black keyboard model) is much darker than human skin tone. The
camera, set on top of the computer monitor looking down, records a picture
of the keyboard when the application is first started. When the hands appear

over the keyboard, it then uses this image to be able to distinguish when the
user, pinching their thumb and forefinger together, has created a ‘hole’ over
the keyboard. This hole is distinguished in several steps, including obtaining
a binary segmentation of the scene, computing the connected components of
the background pixels, and identifying components of significant size, which
are the ‘holes’ of a pinching hand.

Figure 3: View of the webcam over the keyboard, binary segmentation,
and connected component detection of one and two hands.

The centroid of this hole is the point used for cursor control. Cursor
movement is enabled when the user first pinches their fingers, and ends
when the pinching stops. To create mouse clicks, the interface uses the rapid
closing and opening of the thumb and forefinger as the mouse-down and
mouse-up events. Double clicking can also be done this way, by creating the
motion twice. For dragging, a ‘dragging mode’ must be initialized by a quick
open-and-close gesture of the thumb and forefinger, and is ended when the
fingers are separated.

Wilson’s technique also allows for more complicated interaction, such as
using two-handed pinch detection for translation, rotation, and scaling, which
he uses in a map application to zoom in and out, rotate, and pan the map.
These changes can be computed from the ellipsoidal hole created when
pinching. Scaling, for example, is done when the size of the ellipsoid gets
larger or smaller as the hand moves either toward or away from the camera.

Wilson’s method has several advantages over other more complex hand
tracking methods. For one, the pinch gesture is more precise than tracking
an extended index finger, since it is less ambiguous as to when the gesture
has been made. Also, the simple image processing done for this method is
more straightforward than other techniques, in that it does not need to know
anything about the precise hand shape or where the fingertips are.

1.4. Previous experience

Ben Baldus is a senior in Computer Science. Over the past four years he has
gained experience programming in Visual Basic, C, and C#. Ben has been
programming in C++ for over 5 years. Though he has been involved in
several unique projects and created several windows applications in his free
time, he was excited to bring his skills to this interesting and novel project.

Juan Lizarraga has successfully completed the first 4 out of 6 years of
Telecommunication Engineering at the Universidad Pública de Navarra
(Spain) and he is now in his 5th year at Iowa State University. During this time
he has attended courses in several fields such as Circuit Design (analog and
digital), Microwave Devices, Fiber Optics, Computer Networks and Signal
Processing. The latter has made him gain experience in MATLAB
programming through several projects on audio signal processing, digital
filters and FFT algorithms. He also has some experience in C, Pascal and
Java programming.

Debra Lauterbach is a senior Computer Science and Psychology. She has
experience programming in C, C++, and Java, as well as knowledge of web
programming languages. She has been involved with the Human-Computer
Interaction program since her sophomore year, doing research related to
eyetracking and later with OpenGL graphics programming for the C6, and
taking classes and seminars in HCI. She plans to go on to graduate school in
HCI to study user interface design.

2. APPROACH

2.1. Equipment

• Webcam

We used a standard USB webcam at a resolution of 320x240. This viewing
area proved to be sufficient, though a larger area would have advantages as
far as having more room for pinches to be tracked.

This device will be installed on the top part of the monitor pointing toward the
keyboard. The relative position of the camera and keyboard must be as
perpendicular as possible, in order to reduce the tilt angle of the camera.

Figure 4: Example Setup

The scene captured must fit the keyboard.

• Software

o Windows XP: this operating system developed by Microsoft is a stable
and trustworthy platform for running applications made with Microsoft
Visual Studio.

o Microsoft Visual Studio 2005 is Microsoft’s software development

product for programmers. It includes several programming languages
such as Visual Basic, C++, C# and J#. In our case the project was
developed in C++.

o OpenCV is a C++ based computer vision library developed by Intel. It

focuses mainly on real-time image processing, and gives the user a
large amount of tools that provide extensive functionality on this field.
In our project we used OpenCV for capturing frames from the webcam
and processing the images using morphology

Monitor

Keyboard

Webcam

o cvBlobsLib is a library for OpenCV which performs binary image
connected components labeling. It also has additional functionalities
such as manipulating, filtering, and extracting blob features. This
library is used in our project to determine when a pinch is being made,
and to determine the center of the blob for moving the mouse.
The website for cvBlobLib is:
 http://opencvlibrary.sourceforge.net/cvBlobsLib

o Windows Mouse DLL is an open-source code library for “X-Windows-

Like dragging and resizing of windows”. This project uses Windows
hooks to be able to easily move and resize windows by clicking and
dragging anywhere in the window area. This code was tied in to our
project by running it as a separate process, and using pinch gestures
to do the dragging and resizing instead of using a mouse.
The website for Windows Mouse is:
http://www.codeproject.com/dll/wm.asp?df=100&forumid
=4491&exp=0&select=1219138

• Ordinary PC

Any standard PC running Windows XP is capable of running our project.
The minimum hardware requirements are those of the operating system
and the required software.

Figure 5: Real-life setup example.

• Dark colored keyboard
A dark keyboard is necessary to make the algorithm more accurate. This
is because binary segmentation is done to distinguish the keyboard from
the user’s skin. If the color values are too similar, the segmentation will not
be as accurate, which will decrease the usability of moving the mouse.

Since a skin detection algorithm is also applied, it also required to work
over a non-wooden surface so the algorithm keeps stable and does not
confuse the working surface with skin.

2.2. User Interface

When this program is run, the user interface consists of just a window
displaying the hands over the keyboard, and any pinches that are
detected. Pinches with the left hand are colored green, and pinches from
the right hand are colored red.

The gestures that the user can make to interact with the computer include:

NORMAL MODE:
Action Gesture
Clicking Pinch one hand and release
Moving the mouse Pinch one hand and then

move hand. Mouse movement
ends when the pinch ends.

Double Clicking Two fast pinch-and-releases of
one hand

DRAGGING MODE:
Action Gesture
Dragging Dragging mode is initialized by

two fast pinches of one hand,
and ends when pinch ends

Moving the mouse Once dragging mode is
initialized, moving the hand
moves the mouse and drags
any windows that the cursor is
over. Dragging ends when the
pinch ends.

RESIZING MODE:
Action Gesture
Resizing Pinch both hands, and move

the right hand to resize any
window which the cursor is
over. Resizing ends when one
of the pinches ends.

2.3. Algorithms

• Binary segmentation algorithm
There are several image segmentation techniques that we could have
used to segment the hand from the background, but the one implemented
is comparing the current image to a stored background image of the
keyboard. This image is taken when the program first starts running, at a
time when the hands are not over the keyboard.

To segment the image, we compared the pixel values between the
background image and the current frame image. If the pixel had changed
significantly in value then, it is be labeled as ‘hand’ and set to be white. If
the value has not changed significantly, then it can be labeled as
‘background’ and set to be black.

• Skin detection algorithm

Our program hinges on obtaining a quality image segmentation to be able
to detect pinch gestures. After much trial and error, we discovered that
using just binary image segmentation was not enough, since the light-
colored key labels interfered with the segmentation.

As a solution, we implemented a second method to analyze the image by
using skin detection to detect color values within a certain range. This
analysis was done before the binary segmentation, and the results of the
two processes were added together to produce a final segmented image,
with all background pixels being black, and all hand pixels being white.

Figure 8: Pinch detected on one hand, pinch detected on both hands.

• Blob Detection / connected components algorithm
In Andy Wilson’s pinch detection method, a connected components
algorithm is used to find the shape created by pinching the thumb and
forefinger. However, in our project we decided to use the cvBlobsLib
library to perform our connected components labeling for us. This library is
easy to use, and allowed us to detect blobs and then filter them by a
certain size range.

The largest blob or connected component is the background of the image.
But, when the hand is pinched, this splits the background into two
connected components: the hole formed when the thumb and forefinger
are brought together and the rest of the background. Filtering out the
background component, this leaves us with just the blobs produced by
pinching one or both of the hands.

Figure 6: Connected Components Analysis

We also have to take into account that a connected component could
occur at the edge of the viewing area, if the hand segments out a corner of
the image. In this case, we do not want this to be detected as a connected
component.

 Figure 7: Eliminating connected components on the image edge

Background
connected
component

Background large
connected
component

Background
connected
component

Background large
connected
component

Background
connected
component

To solve this problem, we checked the Min and Max X and Y values for
each connected component to ensure they were not on the border of the
viewing area, which is set to 320x240 pixels (camera resolution).

• Mouse movement algorithm

The cvBlobsLib library can be used to obtain statistics about the blobs,
such as their centroid, which we use as the point of reference from which
to move the mouse.

The algorithm to determine when to move the mouse and when to change
states is shown in the decision tree below:

2.4. Dataflow

Background image

Webcam
Capture
Frame

Image
Segmentation

Connected
Components
Analysis

Is there
any hole?

No

Previous
Frame
Centroid

Calculate
cursor
movement

Yes

Calculate
Centroid

Calculate time
between pinch
gestures

Click?

Operating System

Yes

Skin
Detection

O
r

3. Evaluation Methodology

3.1. Tests

Our test consisted of taking test subjects and after a basic explanation of how
the program works, asking them to perform certain tasks such as moving the
mouse, clicking, double clicking, resizing and dragging (See copy of
questionnaire attached).,

After the subjects finished playing with the interface, they were given a
questionnaire. The questionnaire had several Likert-style questions asking
the user to rate their experience on a scale of one to five for several aspects
we found important, including usability, usefulness, learning curve, and
overall enjoyment. (See copy of questionnaire attached). Afterwards they
were asked if they would use it in case it was made available. An optional
comment field was also provided.

While the user tested the interface, a test observer was taking notes about
which of the tasks were successfully completed. The test observer also took
notes about the causes of the difficulties encountered by the user.

3.2. Conditions for Success

Our main conditions for success were that the user would be able to quickly
learn how to interact with the computer and more importantly that they would
enjoy themselves.

3.3. Test Conditions

For our test, we focused on the ability of the user to perform the following
tasks: Clicking, Moving the Mouse, Double Clicking, Resizing, and Dragging.
The user was required to perform these functions within a five minute time
period. The opinions of the test subject were also a major factor in testing the
usability, usefulness, learning curve, and overall enjoyment of interacting with
the computer in this fashion.

3.4. Test Subjects

Test subjects were a random group of our peers at Iowa State University.
Since our target audience for this project is advanced computer users, we
obtained our 10 volunteer test subjects from computer science students who
were working in the computer lab in Pearson.

The project could benefit from future testing of a wider range of computer
users of different skill levels; however for the current project these test
subjects will suffice.

3.5. Results Evaluations

We evaluated our results based on two things: our notes from observations
during testing, and the questionnaire filled out by the test subjects after
testing.

We computed statistics for these results over all users to gain an
understanding of the average opinion of the system. Combined with our notes
from observations during testing, these results help provide a clear picture of
whether gestures are an appropriate alternative to the mouse.

Average Results

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Learning Curve Usability Usefulness Overall Enjoyment

Question

Average

Test Subject # 1 2 3 4 5 6 7 8 9 10 Average
Learning Curve 3.5 3 4 4 3 2 3 3 4 3.5 3.3

Usability 2.5 3 4 4 3 3 2 2 4 3 3.05
Usefulness 3 2 5 3 3 2 4 4 4 3.5 3.35

Overall Enjoyment 3.5 5 4 5 5 4 5 5 5 4.5 4.6

From these results we can say that the users liked the interface and 9 out of
10 people tested expressed their interest in using the interface if made
available.

Test also showed that we need to improve the usability by implementing a
more stable solution. With a greater degree of usability we can assume that
the usefulness of this type of computer-human interaction will improve as
well.

3.6. User Feedback

Some feedback we received was the need of a more stable cursor (mouse
precision) as well as a wider working area.

The users also expressed their interest in the new way to interact with their
PC. Some of them found it really fun and stated their willingness to use it at
home. One of them even mentioned that they think the mouse is out of date
and and should be reinvented.

3.7. Future improvement

We envision several possible future improvements for this technology. For
starters, in his research, Wilson notes that there are several areas for
improvement with his interface, including providing better cues to the user
that a gesture has been recognized, such as visual or audible cues, as well
as investigating better methods for implementing clicking and dragging than
the current pinch-release-pinch gesture.

Our experience has shown us that the portion of the application that needs
the most improvement is the image segmentation. We attempted to resolve
this problem by implementing skin detection. Though an improvement was
noted, the results still are not perfect. Additional work could be done to fine-
tune a more accurate segmentation algorithm.

This program could also be extended by implementing new gestures and
functionality. There are many applications to which this technology could be
applied, other than just simple cursor control. Some ideas are gestures that
would show or hide windows in Windows XP/Vista, or gestures to control
browser actions when using the Internet. If appropriate means are found
which could implement these applications, they would certainly be feasible to
create.

Sources

Lenman, S., Bretzner, L., Thuresson, B. (2002): Computer vision based hand gesture
interfaces for human-computer interaction. Technical Report TRITA-NA-D0209,
2002, CID-172, Royal Institute of Technology, Sweden.

O’Hagan, R. & Zelinsky, A. (1997) Finger Track – A Robust and Real-Time Gesture
Interface. Australian Joint Conference on AI, Perth.

Quek, F., Mysliwjec, T. & Zhao, M. (1995). Finger Mouse: A Freehand Pointing
Interface. Proceedings of the International Workshop on Automatic Face and
Gesture Recognition. June 26-28, 1995, pp. 372-377.

Stenger, B. (2006). Model-based hand tracking using a hierarchical Bayesian filter,
IEEE Transactions on Pattern Analysis and Machine Intelligence. 28 (9), pp. 1372–
1384.

von Hardenberg, C. & Berard, F. (2001) Bare-Hand Human-Computer Interaction. ACM
Workshop on Perceptive User Interfaces, Orlando, Florida.

Wilson, A. (2006). Robust Computer Vision-Based Detection of Pinching for One and
Two-Handed Gesture Input. UIST ’06. October 15-18, 2006, pp. 255-258.

Wu, Y. & Huang, T.S. (1999). Vision-based gesture recognition: A review. In A. Braffort
et al., editor, Gesture-Based Communication in Human-Computer Interaction, 102-
116, 1999.

