
Enabling Cursor Control Using on Pinch

Gesture Recognition

Benjamin Baldus

Debra Lauterbach

Juan Lizarraga

October 5, 2007

Abstract

In this project we expect to develop a machine-user interface based on

the pinch gesture recognition using simple computer vision techniques.

Our goal is to make a simple interface that can be run using ordinary

hardware and requires little training.

1. Motivation

The use of only basic input devices such as the mouse and keyboard is

limiting the creativity and capabilities of the user. We want to expand the

ways that people are able to interact with their computers. We want to enable

all users to interact more naturally using simple hand gestures to control

tasks. These hand gestures can be recognized in real time to allow for quick

human-computer interaction.

Bringing the thumb and forefinger together is a natural gesture that can be

used for cursor control via a computer vision-based interface. When

performing the gesture, the hole formed in the middle of the hand shape

divides the background into two different connected components, the large

background and the hole itself. Using image segmentation and connected

components analysis it is possible to detect this hole, avoiding having to use

complicated algorithms and hand shape recognition techniques.

Once the hole is recognized, several procedures can be performed to

measure its movement and orientation. All these measurements can be

translated into mouse events, letting the user control the cursor.

1.1. Target audience & Need for the application

Anyone with a computer and a camera would be should be able to take

advantage of this method. This type of human and computer interaction would

also benefit those that have difficulty using the normal input devices. For

example people with hand and wrist problems such as carpal tunnel or

arthritis have extreme difficulty using a mouse.

For most users they will find that this is a more natural way to interact with

their computers. With the camera positioned over the keyboard this also

speeds up the transition from typing to interacting with the computer in other

ways.

1.2. Previous approaches

Hand gesture recognition for computer control is a popular research topic in

computer vision. The first research on in the area began in about 1992, when

it first became possible to grab images from a camera in real time, and thus

enable effective human-computer interaction. Research in the area has

typically fallen within the categories of applications for pointing, presenting,

digital desktops, virtual workbenches, and virtual reality. In all cases, the

motivation has been to create convenient, intuitive, powerful means of

interaction with a computer that can serve as an alternative to the traditional

keyboard and mouse.

Approaches to recognizing hand gestures have usually been divided into two

types: model-based and view-based approaches. Model-based approaches

use a 3D hand model for tracking, which has many more potential

applications, but is a challenging task. The main problems are that it works

well only for relatively slow hand motions, and in constrained environments

(Stenger, 2006). View-based approaches, however, use pattern classification

to identify hand features and determine the current hand pose. The main

challenges in this case are to find how to segment the hand from the

background, and how to determine which features to extract from the

segmented region. Segmentation is often done using skin color detection and

segmenting this from a uniform background.

For both approaches, tactics to help in recognizing hand gesture input

include:

- using props or input devices, such as a pen or dataglove
- restricting the object information, as through a silhouette of the hand
- restricting the recognition situation, by using a uniform background
- restricting the set of gestures made, and using only one hand (Lenman,

Bretzner & Thuresson, 2002)

Figure 1: Some previous research approaches, using data gloves, edge

detection, and skin color segmentation.

Cursor Control

Several applications for cursor control have been created using 2D tracking.

These methods all use a single camera to track a hand, and have typically

used pointing gestures as the means of replacing the mouse. An early

example is Finger Mouse (Quek, Mysliwjec & Zhao, 1995), which used a

camera to view the hand from above and recognize hand gestures to control

the mouse. One drawback of this system was that the user had to press the

shift key with their other hand in order to ‘click’, making the system not

completely gesture-based. Later applications found ways to solve this

problem and create click gestures, such as O’Hagan (1997) who defined

clicking as when two fingers were extended, and von Hardenberg and Berard

(2001) who defined clicking as when a one second delay in hand movement

occurred.

1.3. Related work

While previous applications have used complicated model or view-based

approaches to do hand gesture tracking, the goal of our project is to

implement this in a simpler, more intuitive way. We also wish to study strictly

hand gestures that are done over the keyboard instead of away from the

computer, since this is a more natural and easy place to use gestures. To

fulfill these goals, we will be basing our project off of the research of Andy

Wilson of Microsoft Research, who has created a way to detect pinching

gestures over the keyboard using simple image processing techniques.

Wilson’s technique makes use of the fact that the keyboard (in his case, a

common black keyboard model) is much darker than human skin tone. The

camera, set on top of the computer monitor looking down, records a picture

of the keyboard when the application is first started. When the hands appear

over the keyboard, it then uses this image to be able to distinguish when the

user, pinching their thumb and forefinger together, has created a ‘hole’ over

the keyboard. This hole is distinguished in several steps, including obtaining

a binary segmentation of the scene, computing the connected components of

the background pixels, and identifying components of significant size, which

are the ‘holes’ of a pinching hand.

The centroid of this hole is the point used for cursor control. Cursor

movement is enabled when the user first pinches their fingers, and ends

when the pinching stops. To create mouse clicks, the interface uses the rapid

closing and opening of the thumb and forefinger as the mouse-down and

mouse-up events. Double clicking can also be done this way, by creating the

motion twice. For dragging, a quick open-and-close gesture of the thumb and

forefinger is used to initiate dragging, and is ended when the fingers are

separated.

Wilson’s technique also allows for more complicated interaction, such as

translation, rotation, and scaling. These changes can be computed from the

ellipsoidal hole created when pinching. Scaling, for example, is done when

the size of the ellipsoid gets larger or smaller as the hand moves either

toward or away from the camera.

This technique can also be implemented using two hands to create pinching

gestures. This is especially useful in enabling special interactions, such as

zooming in or out by moving the hands together or apart. Moving one hand

faster than the other will rotate the view about an axis determined by their

motion, which each hand being ‘pinned’ the map during the rotation.

This method has several advantages over other more complex hand tracking

methods. For one, the pinch gesture is more precise than tracking an

extended index finger, since it is less ambiguous as to when the gesture has

been made. The simple image processing performed for this method is more

straightforward than other techniques, in that it does not need to know

anything about the precise hand shape or where the fingertips are.

1.4. Previous experience

Ben Baldus is a senior in Computer Science. Over the past four years he has

gained experience programming in Visual Basic, C, and C#. Ben has been

programming in C++ for over 5 years. Though he has been involved in

several unique projects and created several windows applications in his free

time, he is really excited to bring his skills to this interesting and novel project.

Juan Lizarraga has successfully completed the first 4 out of 6 years of

Telecommunication Engineering at the Universidad Pública de Navarra

(Spain) and he is now in his 5th year at Iowa State University. During this time

he has attended courses in several fields such as Circuit Design (analog and

digital), Microwave Devices, Fiber Optics, Computer Networks and Signal

Processing. The latter has made him gain experience in MATLAB

programming through several projects on audio signal processing, digital

filters and FFT algorithms. He also has some experience in C, Pascal and

Java programming.

Debra Lauterbach is a senior Computer Science and Psychology. She has
experience programming in C, C++, and Java, as well as knowledge of web
programming languages. She has been involved with the Human-Computer
Interaction program since her sophomore year, doing research related to eye
tracking and later with OpenGL graphics programming for the C6, and taking
classes and seminars in HCI. She plans to go on to graduate school in HCI to
study user interface design.

2. APPROACH

2.1. Equipment

• Webcam

It will be necessary to use a standard USB webcam with a minimum
resolution of 640x480 pixels at a frame rate of 30Hz.

This device will be installed on the top part of the monitor pointing toward the
keyboard. The relative position of the camera and keyboard must be as
perpendicular as possible, in order to reduce the tilt angle of the camera.

Figure 3: Example Setup

The scene captured must fit the keyboard.

• Software

o Windows XP: this operating system developed by Microsoft is a stable
and trustworthy platform for running applications made with Microsoft
Visual Studio.

o Microsoft Visual Studio 2005 is Microsoft’s software development

product for programmers. It includes several programming languages
such as Visual Basic, C++, C# and J#. In our case we will develop our
project in C/C++.

o OpenCV is a C++ based computer vision library developed by Intel. It

focuses mainly on real-time image processing, and gives the user a
large amount of tools that provide extensive functionality on this field.
In our project we will use OpenCV for capturing the video stream.

Monitor

Keyboard

Webcam

• Ordinary PC

As with any other program this one will need a platform on which to run.
Any standard PC running Windows XP should be able to run our project.
The minimum hardware requirements are those of the operating system
and the required software. There is just one hardware requirement that
does not depend on the software, but is necessary because it makes the
algorithm more accurate. It is necessary to have a black, or at least dark-
colored, keyboard.

Figure 4: Real-life setup example.

2.2. Algorithms

• Algorithm for detecting pinch gesture

This algorithm hinges on the image segmentation and connected
components analysis. When the pinch gesture is made it is possible to
distinguish a hole in the middle of the hand shape. An algorithm for detecting
connected components is applied. This results in the detection of the hand as
the biggest connected component, but when analyzing the background it has
been split into two connected components: the hole formed when the thumb
and forefinger are brought together and the large background component.

 Figure 5: Connected Components Analysis

There are several image segmentation techniques, but the one we are going
to use is comparing the current image to a background stored picture. If the
pixel has changed significantly in value then it can be labeled as ‘hand’ but if
it doesn’t then it can be labeled as ‘background’.

The criterion to identify which is the hole and which is the remaining
background is the size of the connected components. The background will be
the largest one and the hole the smallest, but we have to take into account
that there could be more than two connected components as shown in the
following figure:

 Figure 6: Eliminating connected components on the image edge

So we will define a hole as any background connected region, of significant
size, smaller than the largest background connected region, but that has no
pixels in the image border.

Background

connected

component

Background large

connected

component

Background

connected

component

Background large

connected

component

Background

connected

component

• Algorithm for tracking

Once the pinch gesture is detected it is possible to find the centroid of the
connected component (hole). If this process is repeated frame by frame then
the program will be able to track the hand and use this movement as the
cursor control.

• Algorithm for detecting clicks

The click detection is based on the rapid closing and opening of the thumb
and forefinger. This can be done by measuring the time between two
consecutive pinch gesture detections.

• Algorithm for detecting rotations

It is possible to calculate an oriented ellipsoidal model over the connected
component. Changes in this model will let our program track changes in
orientation that can be used, for example, in programs that allow users to
rotate objects such as maps or figures.

 Figure 7: Pinch detected on one hand and displayed onscreen

Figure 8: Pinch detected on both hands.

2.3. Dataflow

Background image

Webcam
Capture

Frame

Image

Segmentation

Connected

Components

Analysis

Is there

any hole?

No

Calculate oriented

ellipsoidal model

Previous

Frame

Centroid

Calculate

cursor

movement

Previous

Frame

oriented

ellipsoidal

model

Calculate

rotation

Yes

Calculate

Centroid

Calculate time

between pinch

gestures

Click?

Operating System

Yes

3. Evaluation Methodology

3.1. Tests

Testing should include several key methods. First, the system has to work for

many different people. Second, the system should not recognize false

gestures. Third, the system should work in more then one stable environment.

In order to fulfill these test requirements we will need volunteers to test our

program. The volunteers will be given a set amount of time to learn how to

use the system and to try to fool the camera with false gestures. After they

have completed their test the volunteers are required to fill out a survey. If

necessary we can capture the video from the volunteer to review any

gestures that cause problems. Some of the volunteers will be required to

perform their tests under varying environmental conditions.

3.2. Conditions for Success

While simple gestures are easily recognized under set conditions, our

program has to be able to work for many varying conditions. In order to be

successful, it needs to be able to work for an overwhelming majority of users.

The most common gestures such as pinching (clicking) and cursor movement

are required to work for all cases. The project also needs to avoid any

interference including false gesture recognition. The main success involves

the satisfaction of our users. We want this to be a fun and novel way for users

to interact with their computer, not a hassle.

3.3. Test Conditions

For our test we will be studying the condition of whether the users can pick up
the use of the pinch gesture to control the cursor within a five minute time
period. This will include observing how easy it is for them to learn to
accurately create a pinching gesture, and how easy it is to interact with the
computer through these gestures. We will try to notice if any frustration with
the system develops and why this is caused.

3.4. Test Subjects

Test subjects will be made up of our peers at Iowa State University. We will
run the test on around 10-15 users, one at a time. We will hope to gain a
diverse mix of test subjects through recruiting friends, roommates, and fellow
computer science students.

3.5. Results Evaluations

We will evaluate our results based on two things: our notes from observations
during testing, and a questionnaire filled out by the test subjects after testing.
The questionnaire will have several Likert-style questions asking the user to
rate their experience using gestures for cursor control. We will compute
statistics for these results over all users to gain an understanding of the
average opinion of the system. Combined with our notes from observations
during testing, these results should help provide a clear picture of whether
gestures are an appropriate alternative to the mouse.

3.6. Future improvement

We envision several possible future improvements for this technology. For

starters, in his research, Wilson notes that there are several areas for

improvement with his interface, including providing better cues to the user

that a gestures has been recognized, such as visual or audible cues, as well

as investigating better methods for implementing clicking and dragging than

the current pinch-release-pinch gesture.

Additionally, there are many applications to which this technology could be

applied, other than just simple cursor control. Some ideas are gestures that

would show or hide windows in Windows XP/Vista, or gestures to control

browser actions when using the Internet. If appropriate means are found

which could implement these applications, they would certainly be feasible to

create.

Sources

Lenman, S., Bretzner, L., Thuresson, B. (2002): Computer vision based hand gesture

interfaces for human-computer interaction. Technical Report TRITA-NA-D0209,

2002, CID-172, Royal Institute of Technology, Sweden.

O’Hagan, R. & Zelinsky, A. (1997) Finger Track – A Robust and Real-Time Gesture

Interface. Australian Joint Conference on AI, Perth.

Quek, F., Mysliwjec, T. & Zhao, M. (1995). Finger Mouse: A Freehand Pointing

Interface. Proceedings of the International Workshop on Automatic Face and

Gesture Recognition. June 26-28, 1995, pp. 372-377.

Stenger, B. (2006). Model-based hand tracking using a hierarchical Bayesian filter,

IEEE Transactions on Pattern Analysis and Machine Intelligence. 28 (9), pp. 1372–

1384.

von Hardenberg, C. & Berard, F. (2001) Bare-Hand Human-Computer Interaction. ACM

Workshop on Perceptive User Interfaces, Orlando, Florida.

Wilson, A. (2006). Robust Computer Vision-Based Detection of Pinching for One and

Two-Handed Gesture Input. UIST ’06. October 15-18, 2006, pp. 255-258.

Wu, Y. & Huang, T.S. (1999). Vision-based gesture recognition: A review. In A. Braffort

et al., editor, Gesture-Based Communication in Human-Computer Interaction, 102-

116, 1999.

