

Reading Today's Lecture

- Jain, Kasturi, and Schunck (1995). Machine Vision, "Chapter 4: Image Filtering," McGraw-Hill, pp. 112-139.

Reading for Next Time

- Burt and Adelson (1983). " ${ }^{\text {The Laplacian }}$ Pyramid as a Compact Image Code," IEEE Transactions on Communications, vol. 31(4), pp. 532-540.
- Posted on the reading web page
- (not WebCT)

Some Questions from Last Lecture

Figure 5.2 Set A dilated by a structuring element B that does not contain origin. As a result, the dilated set is not even guaranteed to have a single point in common with A. However, there are always translations of $A \oplus B$ that can contain A.

What would be the result?

Let's verify this using matlab

Histogram Modification

- Scaling
- Equalization
- Normalization

Histogram Scaling (Contrast Stretching)
the pixels in the range $[a, b]$ are expanded to fill the range $\left[z_{1}, z_{k}\right]$

$$
\begin{aligned}
z^{\prime} & =\frac{z_{k}-z_{1}}{b-a}(z-a)+z_{1} \\
& =\frac{z_{k}-z_{1}}{b-a} z+\frac{z_{1} b-z_{k} a}{b-a} .
\end{aligned}
$$

Histogram Equalization

The pixels at levels $z_{1}, z_{2}, \ldots, z_{k_{1}-1}$ map to level z_{1} in the new image.

Histogram Equalization

$$
\sum_{i=1}^{k_{2}-1} p_{i} \leq q_{1}+q_{2}<\sum_{i=1}^{k_{2}} p_{i}
$$

The next range of pixel values, $z_{k_{1}}, \ldots, z_{k_{2}-1}$, maps to level z_{2}. [Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Linear Systems

Linear Space Invariant System

This relation must hold

Convolution

For such a system the output $h(x, y)$ is the convolution of $f(x, y)$ with the impulse response $\mathrm{g}(\mathrm{x}, \mathrm{y})$
$h(x, y)=f(x, y) \star g(x, y)$

$$
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x^{\prime}, y^{\prime}\right) g\left(x-x^{\prime}, y-y^{\prime}\right) d x^{\prime} d y^{\prime} .
$$

Example of 3×3 convolution mask

$$
h[i, j]=A p_{1}+B p_{2}+C p_{3}+D p_{4}+E p_{5}+F p_{6}+G p_{7}+H p_{8}+I p_{9}
$$

Example of 3×3 convolution mask

A	B	C
D	E	F
G	H	I

$h[i, j]=A p_{1}+B p_{2}+C p_{3}+D p_{4}+E p_{5}+F p_{6}+G p_{7}+H p_{8}+I p_{9}$
Convolution is essentially equivalent to computing a weighted sum of image pixels.

In plain words

Types of Image Noise

- Salt and Pepper Noise
- random occurrences of black and white pixels
- Impulse noise
- Random occurrences of white pixels only
- Gaussian noise
- Variations of intensity that are drawn from a Gaussian or normal distribution

Mean Filter

- Arbitrary neighborhood

$$
h[i, j]=\frac{1}{M} \sum_{(k, l) \in N} f[k, l]
$$

- For a 3×3 neighborhood

$$
h[i, j]=\frac{1}{9} \sum_{k=i-1}^{i+1} \sum_{k=j-1}^{j+1} f[k, l] .
$$

Median Filter

- Sort the pixels into ascending order by their gray level values
- Select the value of the middle pixel as the new value for pixel [i, j]

The Gaussian Function

- Zero mean 1D Gaussian

$$
g(x)=e^{-\frac{x^{2}}{2 \sigma^{2}}},
$$

- Zero mean 2D Gaussian for image processing applications

$$
g[i, j]=e^{-\frac{\left(i^{2}+j^{2}\right)}{2 \sigma^{2}}},
$$

Rotational Symmetry

- Original formula

$$
g[i, j]=e^{-\frac{\left(\alpha^{2}+r^{2}\right)}{2 \sigma^{2}}} .
$$

- Switch to polar coordinates

$$
r^{2}=i^{2}+j^{2}
$$

- Result (does not depend on θ)

$$
g(r, \theta)=e^{-\frac{r^{2}}{2 \sigma^{2}}},
$$

Gaussian Separability

$$
\begin{aligned}
g[i, j] * f[i, j] & =\sum_{k=1}^{m} \sum_{l=1}^{n} g[k, l] f[i-k, j-l] \\
& =\sum_{k=1}^{m} \sum_{i=1}^{n} e^{\left.-\frac{\left(k^{2}+l^{2}\right.}{2 \sigma^{2}}\right)} f[i-k, j-l] \\
& =\sum_{k=1}^{m} e^{-\frac{k^{2}}{2 \sigma^{2}}}\left\{\sum_{l=1}^{n} e^{\left.-\frac{i^{2}}{2 \sigma^{2}} f[i-k, j-l]\right\} .} .\right.
\end{aligned}
$$

Gaussian Properties

- Rotationally symmetric in 2 D
- Has a single peak
- The width of the filter and the degree of smoothing are determined by sigma
- Large Gaussian filters can be implemented very efficiently using small Gaussian filters

The convolution of a Gaussian with itself yields a scaled Gaussian with larger sigma

```
\(g(x) \star g(x)=\int_{-\infty}^{\infty} e^{-\frac{\xi^{2}}{2 \sigma^{2}}} e^{-\frac{(x-\xi)^{2}}{2 \sigma^{2}}} d \xi\)
    \(=\int_{-\infty}^{\infty} e^{-\frac{(\xi+\xi)^{2}}{2 \sigma^{2}}} e^{-\frac{\left(\frac{(\xi-\xi)^{2}}{2 \sigma^{2}}\right.}{2}} d \xi, \quad \xi \rightarrow \xi+\frac{x}{2}\)
    \(=\int_{-\infty}^{\infty} e^{-\frac{\left(2 \xi^{2}+\frac{x^{2}}{2}\right)}{2 \sigma^{2}}} d \xi\)
    \(=e^{-\frac{\xi^{2}}{4 \sigma^{2}}} \int_{-\infty}^{\infty} e^{-\frac{\xi^{2}}{\sigma^{2}}} d \xi\)
    \(=\sqrt{\pi} \sigma e^{-\frac{\tau^{2}}{2(\sqrt{2} \sigma)^{2}}}\).
```


Properties

The product of the convolution of two Gaussian functions with a spread σ is a Gaussian function with a spread $\sqrt{2} \sigma$ scaled by the area of the Gaussian filter

Designing Gaussian Filters

Example: 6 choose 3

$$
6 * 5 * 4 * 3 * 2 * 1
$$

For example, [6:3] = ------------------------- = 20 3*2*1*3*2*1

Binomial Coefficients

$$
\begin{array}{lc}
(x+1)^{\wedge} 0 & 1 \\
(x+1)^{\wedge} 1= & 1+x \\
(x+1)^{\wedge} 2= & 1+2 x+x^{\wedge} 2 \\
(x+1)^{\wedge} 3= & 1+3 x+3 x^{\wedge} 2+x^{\wedge} 3 \\
(x+1)^{\wedge} 4 & 1+4 x+6 x^{\wedge} 2+4 x^{\wedge} 3+x^{\wedge} 4 \\
(x+1)^{\wedge} 5 & \\
\hline
\end{array}
$$

Another Way: Compute the Weights

- Start with a discrete Gaussian

$$
g[i, j]=c e^{-\frac{\left(i^{2}+j^{2}\right)}{2 \sigma^{2}}}
$$

- Normalize the weights

$$
\frac{g[i, j]}{c}=e^{-\frac{\left(i^{2}+j^{2}\right)}{2 \sigma^{2}}}
$$

Example: sigma^2=2, $n=7$

$[i, j]$	-3	-2	-1	0	1	2	3
-3	.011	.039	.082	.105	.082	.039	.011
-2	.039	.135	.287	.368	.287	.135	.039
-1	.082	.287	.606	.779	.606	.287	.082
0	.105	.368	.779	1.000	.779	.368	.105
1	.082	.287	.606	.779	.606	.287	.082
2	.039	.135	.287	.368	.287	.135	.039
3	.011	.039	.082	.105	.082	.039	.011
[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]							

To keep them all integers
$\frac{g[3,3]}{k}=e^{-\frac{\left(3^{2}+3^{2}\right)}{2(2)^{2}}}=0.011 \Longrightarrow k=\frac{g[3,3]}{0.011}=\frac{1.0}{0.011}=91$.

Integer Weights

$[i, j]$	-3	-2	-1	0	1	2	3
-3	1	4	7	10	7	4	1
-2	4	12	26	33	26	12	4
-1	7	26	55	71	55	26	7
0	10	33	71	91	71	33	10
1	7	26	55	71	55	26	7
2	4	12	26	33	26	12	4
3	1	4	7	10	7	4	1

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

3D Plot of the 7×7 Gaussian

15×15 Gaussian Mask

2	2	3	4	5	5	6	6	6	5	5	4	3	2	2
2	3	4	5	7	7	8	8	8	7	7	5	4	3	2
3	4	6	7	9	10	10	11	10	10	9	7	6	4	3
4	5	7	9	10	12	13	13	13	12	10	9	7	5	4
5	7	9	11	13	14	15	16	15	14	13	11	9	7	5
5	7	10	12	14	16	17	18	17	16	14	12	10	7	5
6	8	10	13	15	17	19	19	19	17	15	13	10	8	6
6	8	11	13	16	18	19	20	19	18	16	13	11	8	6
6	8	10	13	15	17	19	19	19	17	15	13	10	8	6
5	7	10	12	14	16	17	18	17	16	14	12	10	7	5
5	7	9	11	13	14	15	16	15	14	13	11	9	7	5
4	5	7	9	10	12	13	13	13	12	10	9	7	5	4
3	4	6	7	9	10	10	11	10	10	9	7	6	4	3
2	3	4	5	7	7	8	8	8	7	7	5	4	3	2
2	2	3	4	5	5	6	6	6	5	5	4	3	2	2

Properties of Discrete Gaussian Filters

- Step 1: smooth with $\mathrm{n} \times \mathrm{n}$ discrete Gaussian Filter
- Step 2: smooth the intermediary result from Step 1 with $\mathrm{m} \times \mathrm{m}$ discrete Gaussian Filter
- Step $1+$ Step 2 are equivalent to smoothing the original with $(n+m-1) \times(n+m-1)$ discrete Gaussian Filter

