

HCI/ComS 575X: Computational Perception

Instructor: Alexander Stoytchev http://www.cs.iastate.edu/~alex/classes/2007_Spring_575X/

Reading for Next Time

- Burt and Adelson (1983). <u>"The Laplacian</u> <u>Pyramid as a Compact Image Code,"</u> IEEE Transactions on Communications, vol. 31(4), pp. 532-540.
- · Posted on the reading web page
- (not WebCT)

Histogram Modification

- Scaling
- Equalization
- Normalization

Histogram Scaling (Contrast Stretching)

the pixels in the range [a, b] are expanded to fill the range $[z_1, z_k]$ $z' = \frac{z_k - z_1}{b - a}(z - a) + z_1$ $= \frac{z_k - z_1}{b - a}z + \frac{z_1b - z_ka}{b - a}.$ [Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Matlab Demo

The convolution of a Gaussian with
itself yields a scaled Gaussian
with larger sigma
$$g(x) \star g(x) = \int_{-\infty}^{\infty} e^{-\frac{\xi^2}{2\sigma^2}} e^{-\frac{(x-\xi)^2}{2\sigma^2}} d\xi$$
$$= \int_{-\infty}^{\infty} e^{-\frac{(\frac{x}{2}+\xi)^2}{2\sigma^2}} e^{-\frac{(\frac{x}{2}-\xi)^2}{2\sigma^2}} d\xi, \quad \xi \to \xi + \frac{x}{2}$$
$$= \int_{-\infty}^{\infty} e^{-\frac{(x^2+\xi^2)^2}{2\sigma^2}} d\xi$$
$$= e^{-\frac{x^2}{4\sigma^2}} \int_{-\infty}^{\infty} e^{-\frac{\xi^2}{2\sigma^2}} d\xi$$
$$= \sqrt{\pi} \sigma e^{-\frac{x^2}{2(\sqrt{2}\sigma)^2}}.$$
(Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Another Way: Compute the Weights
Start with a discrete Gaussian
$g[i,j] = c e^{-rac{(i^2+j^2)}{2\sigma^2}}$
 Normalize the weights
$rac{g[i,j]}{c} = e^{-rac{(i^2+j^2)}{2\sigma^2}}$
[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

i, j	-3	-2	-1	0	1	2	3
-3	.011	.039	.082	.105	.082	.039	.011
-2	.039	.135	.287	.368	.287	.135	.039
-1	.082	.287	.606	.779	.606	.287	.082
0	.105	.368	.779	1.000	.779	.368	.105
1	.082	.287	.606	.779	.606	.287	.082
2	.039	.135	.287	.368	.287	.135	.039
3	.011	.039	.082	.105	.082	.039	.011

[i, j]	-3	-2	-1	0	1	2	3	
-3	1	4	7	10	7	4	1	-
-2	4	12	26	33	26	12	4	
$^{-1}$	7	26	55	71	55	26	7	
0	10	33	71	91	71	33	10	
1	7	26	55	71	55	26	7	
$\frac{1}{2}$	4	12	26	33	26	12	4	
3	1	4	7	10	7	4	1	

Normalization constant

$$\sum_{i=-3}^{3} \sum_{j=-3}^{3} g[i, j] = 1115.$$

$$h[i, j] = \frac{1}{1115} (f[i, j] \star g[i, j])$$

1	1	2	2	2	1	1
1	2	2	4	2	2	1
2	2	4	8	4	2	2
2	4	8	16	8	4	2
2	2	4	8	4	2	2
1	2	2	4	2	2	1
1	1	2	2	2	1	1

		, v		0	G	a	us	si	al	I I	VIC	15	n	
2	2	3	4	5	5	6	6	6	5	5	4	3	2	-
2	3	4	5	7	7	8	8	8	7	7	5	4	3	
3	4	6	7	9	10	10	11	10	10	9	7	6	4	
4	5	7	9	10	12	13	13	13	12	10	9	7	5	
5	7	9	11	13	14	15	16	15	14	13	11	9	7	
5	7	10	12	14	16	17	18	17	16	14	12	10	7	-
6	8	10	13	15	17	19	19	19	17	15	13	10	8	1
6	8	11	13	16	18	19	20	19	18	16	13	11	8	1
6	8	10	13	15	17	19	19	19	17	15	13	10	8	1
5	7	10	12	14	16	17	18	17	16	14	12	10	7	
5	7	9	11	13	14	15	16	15	14	13	11	9	7	
4	5	7	9	10	12	13	13	13	12	10	9	7	5	1
3	4	6	7	9	10	10	11	10	10	9	7	6	4	-
2	3	4	5	7	7	8	8	8	7	7	5	4	3	-
2	2	3	4	5	5	6	6	6	5	5	4	3	2	1

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

