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Reading Today’s Lecture

• Jain, Kasturi, and Schunck (1995). 
Machine Vision, ``Chapter 4: Image 
Filtering,'' McGraw-Hill, pp. 112-139. 

Reading for Next Time

• Burt and Adelson (1983). ``The Laplacian
Pyramid as a Compact Image Code,''
IEEE Transactions on Communications, 
vol. 31(4), pp. 532-540. 

• Posted on the reading web page 

• (not WebCT)

Some Questions from Last Lecture

[Haralick and Shapiro (1993). “Computer and Robot Vision,” Ch. 5 ]

What would be the result?
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Which one is correct? Let’s verify this using matlab

Histogram Modification

• Scaling

• Equalization

• Normalization

Histogram Scaling

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Histogram Scaling
(Contrast Stretching)

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Histogram Equalization

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]
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Histogram Equalization

[http://www.profc.udec.cl/~gabriel/tutoriales/rsnote/cp10/cp10-3.htm]

Histogram Equalization

[http://www.profc.udec.cl/~gabriel/tutoriales/rsnote/cp10/cp10-3.htm]

Histogram Equalization

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

The number of pixels 
At level z1 in the new 
histogram

The number of pixels 
At level zi in the old
histogram

Histogram Equalization

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Histogram Normalization

[http://www.profc.udec.cl/~gabriel/tutoriales/rsnote/cp10/cp10-3.htm]

Linear Systems

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]
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Linear Space Invariant System

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

A system whose response remains the same 
irrespective of the position of the input 
pulse is called a space invariant system.

Linear Space Invariant System

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Impulse Response

This relation must hold

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Input Images Output Image
Corresponding to f1

Output Image
Corresponding to f2

Scaling Constants

Convolution

For such a system the output h(x,y) 
is the convolution of  f(x,y) with 

the impulse response g(x,y)

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Convolution

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Example of 3x3 convolution mask

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]
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Example of 3x3 convolution mask

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

In plain words

Convolution is essentially 
equivalent to computing a 

weighted sum of image pixels.

Convolution is a linear operation

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Types of Image Noise
• Salt and Pepper Noise

– random occurrences of black and white pixels

• Impulse noise
– Random occurrences of white pixels only

• Gaussian noise
– Variations of intensity that are drawn from a 

Gaussian or normal distribution

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Mean Filter

• Arbitrary neighborhood

• For a 3x3 neighborhood

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]
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3x3 Mean Filter 

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

3x3 Linear Smoothing Filter

In general, it is a good idea to have only a 
single peak in your smoothing filter:

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Median Filter

• Sort the pixels into ascending order by 
their gray level values

• Select the value of the middle pixel as the 
new value for pixel [i, j]

3x3 Median Filter

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Matlab Demo

Gaussian Smoothing

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]
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The Gaussian Function

• Zero mean 1D Gaussian

• Zero mean 2D Gaussian for image 
processing applications

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Gaussian Properties

• Rotationally symmetric in 2D
• Has a single peak
• The width of the filter and the degree of 

smoothing are determined by sigma
• Large Gaussian filters can be 

implemented very efficiently using small 
Gaussian filters

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Rotational Symmetry

• Original formula

• Switch to polar coordinates

• Result (does not depend on θ)

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Gaussian Separability

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Gaussian Separability

The convolution of the input image f[i,j]
with a vertical 1D Gaussian function

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Cascading Gaussians

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]
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The convolution of a Gaussian with 
itself yields a scaled Gaussian

with larger sigma

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Properties

The product of the convolution of two 
Gaussian functions with a spread             
is a Gaussian function with a spread                            

scaled by the area of the Gaussian 
filter

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Designing Gaussian Filters

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Pascal’s Triangle
(Binomial Expansion)

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Example: 6 choose 3

6 * 5 * 4 * 3 * 2 * 1
For example, [6:3] = ------------------------ = 20

3 * 2 * 1 * 3 * 2 * 1 

Binomial Coefficients

(x+1)^0 = 1 
(x+1)^1 = 1 + x 
(x+1)^2 = 1 + 2x + x^2 
(x+1)^3 = 1 + 3x + 3x^2 + x^3 
(x+1)^4 =         1 + 4x + 6x^2 + 4x^3 + x^4 
(x+1)^5 = 1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5 ..... 
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Pascal’s Triangle

[http://ptri1.tripod.com/]

A Five Point Approximation

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Another Way: Compute the Weights

• Start with a discrete Gaussian

• Normalize the weights

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Example: sigma^2=2, n=7

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

To keep them all integers

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Integer Weights

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]



10

Normalization constant

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Discrete Gaussian Filters

7x7 Gaussian Mask

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

3D Plot of the 7x7 Gaussian

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

15 x 15 Gaussian Mask

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]

Properties of 
Discrete Gaussian Filters

• Step 1: smooth with n x n discrete Gaussian 
Filter

• Step 2: smooth the intermediary result from Step 
1 with m x m discrete Gaussian Filter

• Step 1 + Step 2 are equivalent to smoothing the 
original with (n+m-1)x(n+m-1) discrete Gaussian 
Filter

[Jain, Kasturi, and Schunck (1995). Machine Vision, Ch. 4]
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THE END


