

Eigenfaces

February 21, 2007

Dana H. Ballard (1999).

"An Introduction to Natural Computation (Complex Adaptive Systems)", Chapter 4, pp 70-94, MIT Press.

Readings for Next Time

- Henry A. Rowley, Shumeet Baluja and Takeo Kanade (1997). " Rotation Invariant Neural Network-Based Face Detection," Carnegie Mellon Technical Report, CMU-CS-97-201.
- Paul Viola and Michael Jones (2001). " ${ }^{\text {Robust }}$

Real-time Object Detection", Second International Workshop on Statistical and Computational Theories of Vision Modeling, Learning, Computing, and Sampling, Vancouver, Canada, July 13, 2001.

Review of Eigenvalues and Eigenvectors

Review Questions

- What is a vector?
- What is a Matrix?
- What is the result when a vector is multiplied by a matrix? $(A x=?)$

Intuitive Definition
- For any matrix there are some vectors
such that the matrix multiplication
changes only the magnitude of the
vector.
- These vectors are called eigenvectors.

On-line Java Applets

- http://www.math.duke.edu/education/ webfeatsII/Lite_Applets/contents.html
- http://www.math.ucla.edu/~tao/resource/ general/115a.3.02f/EigenMap.html

Systems of LinearEquations

Example:

$$
\begin{gathered}
\left(\begin{array}{rr}
2 & 1 \\
-3 & 4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\binom{1}{4} \\
\left.\leftrightarrow \begin{array}{r}
2 x_{1}+x_{2}=1 \\
-3 x_{1}+4 x_{2}=4
\end{array}\right) \leftrightarrow\left(\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\binom{0}{1}
\end{gathered}
$$

Finding the Eigenvectors

$$
\left[\begin{array}{ll}
3 & 1 \\
2 & 2
\end{array}\right]\binom{v_{1}}{v_{2}}=\lambda\binom{v_{1}}{v_{2}}
$$

Finding the Eigenvectors
$\left[\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right]\binom{v_{1}}{v_{2}}-\lambda\binom{v_{1}}{v_{2}}=\binom{0}{0}$

Finding the Eigenvectors
$\left[\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right]\binom{v_{1}}{v_{2}}-\lambda I\binom{v_{1}}{v_{2}}=\binom{0}{0}$

Identity Matrix

Finding the Eigenvectors
$\left[\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right]\binom{v_{1}}{v_{2}}-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]\binom{v_{1}}{v_{2}}=\binom{0}{0}$
Finding the Eigenvectors

$$
\left[\begin{array}{cc}
3-\lambda & 1 \\
2 & 2-\lambda
\end{array}\right]\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

Finding the Eigenvectors

- The solution exists if:

Determinant, not matrix

$$
|W|=0 \quad \text { i.e., } \quad\left|\begin{array}{cc}
3-\lambda & 1 \\
2 & 2-\lambda
\end{array}\right|=0
$$

- Characteristic equation:

$$
(3-\lambda)(2-\lambda)-2=0
$$

Finding the Eigenvectors

- Substituting with $\lambda_{1}=4$
- We get this system of equations

$$
\left[\begin{array}{rr}
-1 & 1 \\
2 & -2
\end{array}\right]\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

Finding the Eigenvectors

- The solutions to the characteristic equation are the eigenvalues

$$
(3-\lambda)(2-\lambda)-2=0
$$

- In this case:

$$
\lambda_{1}=4 \text { and } \lambda_{2}=1
$$

Finding the Eigenvectors

- Thus, first eigenvector is: $\binom{1}{1}$
- The corresponding eigenvalue is: $\lambda_{1}=4$
- Verification:

$$
\left[\begin{array}{ll}
3 & 1 \\
2 & 2
\end{array}\right]\binom{1}{1}=4\binom{1}{1}
$$

Eigenvectors and Eigenvalues in Matlab
>> L = [V(:,1), [0; 0], V(:,2)]'
$\mathrm{L}=$
$0.7071 \quad 0.7071$
$0 \quad 0$
$-0.4472 \quad 0.8944$
>> line(L(:,1), L(:,2))
>> axis([-1, 1, -1, 1])

Three Sample Data Points

$$
X^{1}=\left(\begin{array}{r}
-1 \\
3 \\
1
\end{array}\right), X^{2}=\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right), X^{3}=\left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right)
$$

$$
\begin{gathered}
\text { The mean is equal to } . . . \\
M=\frac{1}{N} \sum_{k=1}^{N} X^{k} \\
M=\frac{1}{3}\left\{\left(\begin{array}{r}
-1 \\
3 \\
1
\end{array}\right)+\left(\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right)+\left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right)\right\} \\
M=\frac{1}{3}\left(\begin{array}{l}
3 \\
6 \\
3
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
\end{gathered}
$$

\quad The Covariance Matrix is Given By
$\Sigma=\frac{1}{N} \sum_{k=1}^{N}\left(X^{k}-M\right)\left(X^{k}-M\right)^{T}$
$\Sigma=\frac{1}{3}\left\{\left[\begin{array}{rrr}4 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{rrr}1 & -1 & -2 \\ -1 & 1 & 2 \\ -2 & 2 & 4\end{array}\right]+\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 4\end{array}\right]\right\}$
$=$
$=\frac{1}{3}\left[\begin{array}{rrr}6 & -3 & 0 \\ -3 & 2 & 2 \\ -2 & 2 & 8\end{array}\right]$
0

Why can we drop $1 / \mathrm{M}$?

$$
\Sigma=\frac{1}{M} \sum_{n=1}^{M} \boldsymbol{X}_{n} \boldsymbol{X}_{n}^{T}
$$

$$
=A A^{T}
$$

Eigenfaces

The Next set of slides come from:

Prof. Ramani Duraiswami's class CMSC: 426 Computer Vision
http://www.umiacs.umd.edu/~ramani/cmsc426/

Eigenfaces, the algorithm

- The database

$$
\vec{m}=\frac{1}{M}\left(\begin{array}{cc}
a_{1}+b_{1}+\cdots+h_{1} \\
a_{2}+b_{2} & +\cdots+h_{2} \\
\vdots & \vdots \\
a_{N^{2}}+b_{N^{2}}+\cdots+h_{N^{2}}
\end{array}\right), \quad \text { where } M=8
$$

- We compute the average face

Eigenfaces, the algorithm

- Then subtract it from the training faces

Eigenfaces, the algorithm

- Now we build the matrix which is N^{2} by M

$$
A=\left[\vec{a}_{m} \vec{b}_{m} \vec{c}_{m} \vec{d}_{m} \vec{e}_{m} \vec{f}_{m} \vec{g}_{m} \vec{h}_{m}\right]
$$

- The covariance matrix which is N^{2} by N^{2}

$$
\operatorname{Cov}=A A^{\mathrm{T}}
$$

Eigenfaces, the algorithm

- Find eigenvalues of the covariance matrix
- The matrix is very large
- The computational effort is very big
- We are interested in at most M eigenvalues - We can reduce the dimension of the matrix

Eigenfaces, the algorithm

- Compute for each face its projection onto the face space

$$
\begin{array}{ll}
\Omega_{1}=U^{\mathrm{T}}\left(\vec{a}_{m}\right), & \Omega_{2}=U^{\mathrm{T}}\left(\vec{b}_{m}\right), \quad \Omega_{3}=U^{\mathrm{T}}\left(\vec{c}_{m}\right), \quad \Omega_{4}=U^{\mathrm{T}}\left(\vec{d}_{m}\right), \\
\Omega_{5}=U^{\mathrm{T}}\left(\vec{e}_{m}\right), \quad \Omega_{6}=U^{\mathrm{T}}\left(\vec{f}_{m}\right), \quad \Omega_{7}=U^{\mathrm{T}}\left(\vec{g}_{m}\right), \quad \Omega_{\mathrm{s}}=U^{\mathrm{T}}\left(\vec{h}_{m}\right)
\end{array}
$$

- Compute the threshold

$$
\theta=\frac{1}{2} \max \left\{\left\|\Omega_{i}-\Omega_{j}\right\|\right\} \text { for } i, j=1 . . M
$$

[http://www.umiacs.umd.edu/~ramani/cmsc426/]
[http://www.umiacs.umd.edu/~ramani/cmsc426/]

Eigenfaces, the algorithm

- Compute its projection onto the face space

$$
\Omega=U^{\mathrm{T}}\left(\vec{r}_{m}\right)
$$

- Compute the distance in the face space between the face and all known faces

$$
\vec{r}_{m}=\left(\begin{array}{c}
r_{1}-m_{1} \\
r_{2}-m_{2} \\
\vdots \\
\vdots \\
r_{N^{2}}-m_{N^{2}}
\end{array}\right)
$$

$$
\varepsilon_{i}^{2}=\left\|\Omega-\Omega_{i}\right\|^{2} \quad \text { for } i=1 . . M
$$

Eigenfaces, the algorithm

- Reconstruct the face from eigenfaces

$$
\vec{s}=U \Omega
$$

- Compute the distance between the face and its reconstruction

$$
\xi^{2}=\left\|\vec{v}_{m_{m}}-\bar{s}\right\|^{2}
$$

Eigenfaces, the algorithm

- Problems with eigenfaces
- Different illumination
- Different head pose
- Different alignment
- Different facial expression

THE END

