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Definition

« A Kalman filter is simply an optimal
recursive data processing algorithm

» Under some assumptions the Kalman filter
is optimal with respect to virtually any
criterion that makes sense.

Definition

“The Kalman filter incorporates all
information that can be provided to it. It
processes all available measurements,
regardless of their precision, to estimate
the current value of the variables of
interest.”

[Maybeck (1979)]

Why do we need a filter?

* No mathematical model of a real
system is perfect

* Real world disturbances

 Imperfect Sensors




Application: Radar Tracking

Application: Lunar Landing

Shuttle Docking with Russian Mir Space Station

Application: Missile Tracking

Application: Sailing

Application: Robot Navigation




Application: Other Tracking

Application: Head Tracking

Face & Hand Tracking

Brown and Hwang (1992)
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Ch 5: The Discrete Kalman Filter

Maybeck, Peter S. (1979)

Chapter 1 in “"Stochastic
models, estimation, and control",

Mathematics in Science and
Engineering Series, Academic
Press.

Arthur Gelb, Joseph Kasper,
Raymond Nash, Charles Price,
Arthur Sutherland (1974)
Applied Optimal Estimation

MIT Press.




A Simple Recursive Example

* Problem Statement:

Given the measurement sequence:
z4, Z,, ..., Z, find the mean

[Brown and Hwang (1992)]

First Approach

1. Make the first measurement z,;
Store z; and estimate the mean as

H1=2Z;

2. Make the second measurement z,
Store z, along with z, and estimate the mean as

Ho= (2,2,)/2

[Brown and Hwang (1992)]

First Approach (cont'd)

3. Make the third measurement z,
Store z, along with z, and z, and
estimate the mean as

Hg= (2,+2,+25)/3

[Brown and Hwang (1992)]

First Approach (cont’'d)

n. Make the n-th measurement z,,
Store z,, along with z,, z, ,..., z,,; and
estimate the mean as

M= (2, + 2,+ ... + Z)n

[Brown and Hwang (1992)]

Second Approach

1. Make the first measurement z,
Compute the mean estimate as

H1=2Zy

Store p, and discard z,

[Brown and Hwang (1992)]

Second Approach (cont’d)

2. Make the second measurement z,
Compute the estimate of the mean as a

weighted sum of the previous estimate |,
and the current measurement z,.
M= 1/2 p, +1/2 z,

Store Y, and discard z, and p,

[Brown and Hwang (1992)]




Second Approach (cont’d)

3. Make the third measurement z,
Compute the estimate of the mean as a

weighted sum of the previous estimate |,
and the current measurement z
Mg= 2/3 4, +1/3 z4

Store p; and discard z; and p,

[Brown and Hwang (1992)]

Second Approach (cont’d)

n. Make the n-th measurement z,
Compute the estimate of the mean as a

weighted sum of the previous estimate
M., and the current measurement z,,.
Mn= (n'l)/n Hn-1 +1/n Z,

Store , and discard z,and y,,_;

[Brown and Hwang (1992)]
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Analysis

» The second procedure gives the same
result as the first procedure.

« It uses the result for the previous step to
help obtain an estimate at the current step.

» The difference is that it does not need to
keep the sequence in memory.

[Brown and Hwang (1992)]

Second Approach
(rewrite the general formula)

K,= (n-1)/n y,, +1/n z,

Second Approach
(rewrite the general formula)

K,= (n-1)/n y,, +1/n z,

M= Hna + 1/n (Zn - Un-l)




Second Approach
(rewrite the general formula)

M= (n'l)/n Hn-1 +1/n Z,

Hn= Hng + 1/n (Zn - un—l)
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Second Approach
(rewrite the general formula)
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Gaussian Properties

The Gaussian Function

Gaussian pdf
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cIf X~N(u,0%) and ¥ = aX +b

« Then Y ~ N(au + b, a2c?)




pdffor ¥ = aX+b

1= (ap+ b))
fy(y) = —=e? @&

Properties

Finally, if X| and X, are independent (see Section 2.5 below), X ~ N(u,. nll) .and
X, ~ N(uy, 03) . then

XI+X2~A'V(.ll]+!.12,0‘]l+(’il). (2.14)
and the density function becomes
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2 2 2
e - = O 4 (T,
AT+ Y A1 I
YX-y T TXT Yy

A simple example using diagrams

Conditional density of position
based on measured value of z;
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[Maybeck (1979)]

Conditional density of position
based on measured value of z;
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Conditional density of position
based on measurement of z, alone
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[Maybeck (1979)]

Conditional density of position
based on measurement of z, alone
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Conditional density of position
based on data z, and z,
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Propagation of the conditional density
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Propagation of the conditional density
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Propagation of the conditional density
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Propagation of the conditional density
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measured position 3

Measurement Update

Time Update
(“Correct™)

(“Predict”)

Updating the conditional density after
the third measurement
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Questions?

Now let’'s do the same thing
...but this time we’ll use math

How should we combine the two
measurements?

Fxte et (¥12)

[Maybeck (1979)]




Calculating the new mean

Calculating the new mean

<9

w = ‘ Scaling Factor 1 2 +‘ Scaling Factor 2

w=[o2/(02 +02)]z +[02 /(02 +062)]z,

uw = ‘ Scaling Factor 1 'Zl +‘ Scaling Factor 2 22
Calculating the new mean
u = ‘ Scaling Factor 1 'zl +‘ Scaling Factor 2 25

u = [((03I +02 )]z +[02 /(02 +062)]z,

Why is this not z,?

Calculating the new variance
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[Maybeck (1979)]

Calculating the new variance
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Calculating the new variance

02 = ‘ Scaling Factor 1 0'_2 + ‘ Scaling Factor 2
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Calculating the new variance

o? = [02/(c2 + (;3’)]03[ + [02 /(02 +02)] 031

Calculating the new variance
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Calculating the new variance

o2 = [(,i/((;gl + gi)](rgl + [0:21/((’3. + "33)]012:
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N % 9z e z, 0,
g = =
(02 +02) (02 +02)

2/02 = (l/ofl)+(l/0i)

Why is this result different from the
one given in the paper?

1/02 = (l/ofl)+(l/oi)

Remember the Gaussian

Properties?
2 2 2
o-x'+ Yy O-X + O-r
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Remember the Gaussian
Properties?

cIf X~N(u,0%) and ¥ = aX +b

« Then Y ~ N(au+ b, d262)

This is a2 not a

The scaling factors must be squared!

()’2 = ‘ Scaling Factor 1 2
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The scaling factors must be squared!
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Therefore the new variance is

/0% = (l/ofl)+(1/cri)

Try to derive this on your own.

Another Way to Express
The New Position

(1) = [0‘_3'7/(0\3l +02)]z, + ["3./(0:2. +02)]z,

=[7 ~v|+[(5§’/((1§‘ +02)]z, + [031/(031 +02)]z,

=z +[02 /(02 +02)][z,- 7]

[Maybeck (1979)]

Another Way to Express
The New Position
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[Maybeck (1979)]
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Another Way to Express
The New Position

[Maybeck (1979)]

The equation for the variance can
also be rewritten as

[Maybeck (1979)]

Adding Movement

dx/dt = u+w

[Maybeck (1979)]

Adding Movement
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Adding Movement

X(13) = 2(157) + K(13)[ 23— 3(157)]

02(15)

02(t5) - K(t3)02(t5)

K(t3) = ol(157)/[0X(t5) + 02 ]

[Maybeck (1979)]

Properties of K

« If the measurement noise is large K is small

K(1y) = o3(15)/[03(15) 02
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[Maybeck (1979)]
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THE END
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