

HCI/ComS 575X: Computational Perception

Instructor: Alexander Stoytchev http://www.cs.iastate.edu/~alex/classes/2007_Spring_575X/

- A Kalman filter is simply an optimal recursive data processing algorithm
- Under some assumptions the Kalman filter is optimal with respect to virtually any criterion that makes sense.

Definition

"The Kalman filter incorporates all information that can be provided to it. It processes all available measurements, regardless of their precision, to estimate the current value of the variables of interest."

[Maybeck (1979)]

Why do we need a filter?

- No mathematical model of a real system is perfect
- Real world disturbances
- Imperfect Sensors

Brown and Hwang (1992)

"Introduction to Random Signals and Applied Kalman Filtering"

Ch 5: The Discrete Kalman Filter

Maybeck, Peter S. (1979)

Chapter 1 in ``Stochastic models, estimation, and control",

Mathematics in Science and Engineering Series, Academic Press. Arthur Gelb, Joseph Kasper, Raymond Nash, Charles Price, Arthur Sutherland (1974)

Applied Optimal Estimation

MIT Press.

First Approach

- 1. Make the first measurement z_1 Store z_1 and estimate the mean as $\mu_1=z_1$
- 2. Make the second measurement z_2 Store z_1 along with z_2 and estimate the mean as

[Brown and Hwang (1992]

[Brown and Hwang (1992

[Brown and Hwang (199

 $\mu_2 = (z_1 + z_2)/2$

3. Make the third measurement z_3 Store z_3 along with z_1 and z_2 and estimate the mean as

 $\mu_3 = (z_1 + z_2 + z_3)/3$

First Approach (cont'd)

n. Make the n-th measurement z_n Store z_n along with z_1 , z_2 ,..., $z_{n\text{-}1}$ and estimate the mean as

 $\mu_n = (z_1 + z_2 + \dots + z_n)/n$

Second Approach

[Brown and Hwang (199

[Brown

1. Make the first measurement z₁ Compute the mean estimate as

 $\mu_1 = z_1$

Store μ_1 and discard z_1

Second Approach (cont'd)

2. Make the second measurement z_2 Compute the estimate of the mean as a weighted sum of the previous estimate μ_1 and the current measurement z_2 .

 μ_2 = 1/2 μ_1 +1/2 z_2

Store μ_2 and discard z_2 and μ_1

Second Approach (cont'd)

3. Make the third measurement z_3 Compute the estimate of the mean as a weighted sum of the previous estimate μ_2 and the current measurement $z_{3:}$

$$\mu_3 = 2/3 \ \mu_2 + 1/3 \ z_3$$

Store μ_3 and discard z_3 and μ_2

[Brown and Hwang (1992)

Second Approach (cont'd)

n. Make the n-th measurement z_n Compute the estimate of the mean as a weighted sum of the previous estimate μ_{n-1} and the current measurement z_n :

Store μ_n and discard z_n and $\mu_{n\text{-}1}$

[Brown and Hwang (1992)

Second Approach (rewrite the general formula)

$$\mu_n = (n-1)/n \mu_{n-1} + 1/n z_n$$

Second Approach (rewrite the general formula)

 $\mu_n = (n-1)/n \mu_{n-1} + 1/n z_n$

$$\mu_n = \mu_{n-1} + 1/n (z_n - \mu_{n-1})$$

Second Approach
(rewrite the general formula)
$$\hat{x}_{n} = \left(\frac{n-1}{n}\right)\hat{x}_{n-1} + \left(\frac{1}{n}\right)z_{n}$$
$$= \left(\frac{n}{n}\right)\hat{x}_{n-1} - \left(\frac{1}{n}\right)\hat{x}_{n-1} + \left(\frac{1}{n}\right)z_{n}$$
$$= \hat{x}_{n-1} + \frac{1}{n}\left(z_{n} - \hat{x}_{n-1}\right)$$

The Gaussian Function
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

• If
$$X \sim N(\mu, \sigma^2)$$
 and $Y = aX + b$

• Then
$$Y \sim N(a\mu + b, a^2\sigma^2)$$

pdf for
$$Y = aX + b$$

$$f_Y(y) = \frac{1}{\sqrt{2\pi a^2 \sigma^2}} e^{-\frac{1}{2} \frac{(y - (a\mu + b))^2}{a^2 \sigma^2}}$$

$$\begin{array}{l} \textbf{Properties} \\ \text{Finally, if } X_1 \text{ and } X_2 \text{ are independent (see Section 2.5 below), } X_1 \sim N(\mu_1, \sigma_1^2), \text{ and} \\ X_2 \sim N(\mu_2, \sigma_2^2), \text{ then} \\ X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2), \quad (2.14) \\ \text{and the density function becomes} \\ f_X(x_1 + x_2) = \frac{1}{\sqrt{2\pi(\sigma_1^2 + \sigma_2^2)}} e^{\frac{1(x - (\mu_1 + \mu_2))^2}{(\sigma_1^2 + \sigma_2^2)}}. \quad (2.15) \end{array}$$

Summation and Subtraction $\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2$ $\sigma_{X-Y}^2 = \sigma_X^2 + \sigma_Y^2$

Calculating the new variance

$$\sigma^2 = [\sigma_{z_2}^2 / (\sigma_{z_1}^2 + \sigma_{z_2}^2)]\sigma_{z_1}^2 + [\sigma_{z_1}^2 / (\sigma_{z_1}^2 + \sigma_{z_2}^2)]\sigma_{z_2}^2$$

Calculating the new variance

$$\sigma^{2} = [\sigma_{z_{2}}^{2}/(\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})]\sigma_{z_{1}}^{2} + [\sigma_{z_{1}}^{2}/(\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})]\sigma_{z_{2}}^{2}$$

$$\sigma^{2} = \frac{\sigma_{z_{2}}^{2}}{\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2}}\sigma_{z_{2}}^{2}}{(\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})} = \frac{2\sigma_{z_{1}}^{2}\sigma_{z_{2}}^{2}}{(\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})}$$

$$2/\sigma^{2} = (1/\sigma_{z_{1}}^{2}) + (1/\sigma_{z_{2}}^{2})$$

Why is this result different from the one given in the paper?

$$1/\sigma^2 = (1/\sigma_{z_1}^2) + (1/\sigma_{z_2}^2)$$

Remember the Gaussian
Properties?
$$\sigma_{X+Y}^{2} = \sigma_{X}^{2} + \sigma_{Y}^{2}$$
$$\sigma_{X-Y}^{2} = \sigma_{X}^{2} + \sigma_{Y}^{2}$$

Remember the Gaussian
Properties?
• If
$$X \sim N(\mu, \sigma^2)$$
 and $Y = aX + b$
• Then $Y \sim N(a\mu + b, a^2\sigma^2)$
This is a^2 not a

Therefore the new variance is

$$1/\sigma^2 = (1/\sigma_{z_1}^2) + (1/\sigma_{z_2}^2)$$

Try to derive this on your own.

Another Way to Express
The New Position

$$f(t_{2}) = [\sigma_{z_{2}}^{2}/(\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})]z_{1} + [\sigma_{z_{1}}^{2}/(\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})]z_{2}$$

$$= \overline{z_{1} - z_{1}} + [\sigma_{z_{2}}^{2}/(\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})]z_{1} + [\sigma_{z_{1}}^{2}/(\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})]z_{2}$$

$$= z_{1} + [\sigma_{z_{1}}^{2}/(\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})][z_{2} - z_{1}]$$
(Maybeck (1979)]

Another Way to Express
The New Position

$$\hat{x}(t_{2}) = [\sigma_{z_{2}}^{2}/(\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})]z_{1} + [\sigma_{z_{1}}^{2}/(\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})]z_{2}$$

$$= z_{1} + [\sigma_{z_{1}}^{2}/(\sigma_{z_{1}}^{2} + \sigma_{z_{2}}^{2})][z_{2} - z_{1}]$$

$$\hat{x}(t_{2}) = \hat{x}(t_{1}) + K(t_{2}) \quad [z_{2} - \hat{x}(t_{1})]$$
(Maybeck (1979)]

Another Way to Express
The New Position

$$\hat{x}(t_2) = \hat{x}(t_1) + K(t_2)[z_2 - \hat{x}(t_1)]$$

 $K(t_2) = \sigma_{z_1}^2 / (\sigma_{z_1}^2 + \sigma_{z_2}^2)$
[Maybeck (1979)]

The equation for the variance can
also be rewritten as
$$\sigma_x^2(t_2) = \sigma_x^2(t_1) - K(t_2)\sigma_x^2(t_1)$$

Adding Movement dx/dt = u + w

Adding Movement

$$\hat{x}(t_3^-) = \hat{x}(t_2) + u[t_3 - t_2]$$

 $\sigma_x^2(t_3^-) = \sigma_x^2(t_2) + \sigma_w^2[t_3 - t_2]$
[Maybeck (1979)]

Adding Movement

$$\hat{x}(t_3) = \hat{x}(t_3^-) + K(t_3)[z_3 - \hat{x}(t_3^-)]$$

$$\sigma_x^2(t_3) = \sigma_x^2(t_3^-) - K(t_3)\sigma_x^2(t_3^-)$$

$$K(t_3) = \sigma_x^2(t_3^-) / [\sigma_x^2(t_3^-) + \sigma_{z_3}^2]$$
(Maybeck (1979)]

