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Definition

• A Kalman filter is simply an optimal 
recursive data processing algorithm

• Under some assumptions the Kalman filter 
is optimal with respect to virtually any 
criterion that makes sense.

Definition

“The Kalman filter incorporates all 
information that can be provided to it. It 
processes all available measurements, 
regardless of their precision, to estimate 
the current value of the variables of 
interest.”

[Maybeck (1979)]

Why do we need a filter?

• No mathematical model of a real 
system is perfect

• Real world disturbances

• Imperfect Sensors
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Application: Radar Tracking Application: Lunar Landing

Application: Missile Tracking

Application: Sailing Application: Robot Navigation
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Application: Other Tracking Application: Head Tracking

Face & Hand Tracking

Brown and Hwang (1992)

“Introduction to Random Signals 
and Applied Kalman Filtering”

Ch 5: The Discrete Kalman Filter

Maybeck, Peter S. (1979)

Chapter 1 in ``Stochastic 
models, estimation, and control'',

Mathematics in Science and 
Engineering Series, Academic 

Press.

Arthur Gelb, Joseph Kasper, 
Raymond Nash, Charles Price, 

Arthur Sutherland (1974)

Applied Optimal Estimation

MIT Press.
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A Simple Recursive Example

• Problem Statement:

Given the measurement sequence:
z1, z2, …, zn find the mean

[Brown and Hwang (1992)]

First Approach

1. Make the first measurement z1

Store z1 and estimate the mean as 
µ1=z1

2. Make the second measurement z2

Store z1 along with z2 and estimate the mean as 

µ2= (z1+z2)/2

[Brown and Hwang (1992)]

First Approach (cont’d)

3. Make the third measurement z3

Store z3 along with z1 and z2 and 
estimate the mean as 

µ3= (z1+z2+z3)/3

[Brown and Hwang (1992)]

First Approach (cont’d)

n.  Make the n-th measurement zn

Store zn along with z1 , z2 ,…, zn-1 and 
estimate the mean as 

µn= (z1 + z2 + … + zn)/n

[Brown and Hwang (1992)]

Second Approach

1. Make the first measurement z1

Compute the mean estimate as 

µ1=z1

Store µ1 and discard z1

[Brown and Hwang (1992)]

Second Approach (cont’d)

2. Make the second measurement z2

Compute the estimate of the mean as a
weighted sum of the previous estimate µ1
and the current measurement z2:

µ2= 1/2 µ1 +1/2 z2

Store µ2 and discard z2 and µ1

[Brown and Hwang (1992)]
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Second Approach (cont’d)

3. Make the third measurement z3

Compute the estimate of the mean as a
weighted sum of the previous estimate µ2
and the current measurement z3:

µ3= 2/3 µ2 +1/3 z3

Store µ3 and discard z3 and µ2

[Brown and Hwang (1992)]

Second Approach (cont’d)

n. Make the n-th measurement zn

Compute the estimate of the mean as a
weighted sum of the previous estimate 
µn-1 and the current measurement zn:

µn= (n-1)/n µn-1 +1/n zn

Store µn and discard zn and µn-1

[Brown and Hwang (1992)]

Comparison

Batch Method Recursive  Method

Analysis

• The second procedure gives the same 
result as the first procedure.

• It uses the result for the previous step to 
help obtain an estimate at the current step.

• The difference is that it does not need to 
keep the sequence in memory.

[Brown and Hwang (1992)]

Second Approach 
(rewrite the general formula)

µn= (n-1)/n µn-1 +1/n zn

Second Approach 
(rewrite the general formula)

µn= (n-1)/n µn-1 +1/n zn

µn= µn-1 +     1/n  (zn - µn-1)
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Second Approach 
(rewrite the general formula)

µn= (n-1)/n µn-1 +1/n zn

µn= µn-1 +     1/n  (zn - µn-1)

Old 
Estimate

Difference
Between

New Reading 
and

Old Estimate

Gain
Factor

Second Approach 
(rewrite the general formula)

Gaussian Properties

The Gaussian Function

Gaussian pdf Properties

• If and

• Then  
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pdf for Properties

Summation and Subtraction

A simple example using diagrams

Conditional density of position 
based on measured value of z1

[Maybeck (1979)]

Conditional density of position 
based on measured value of z1

[Maybeck (1979)]

position

measured position

uncertainty
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Conditional density of position 
based on measurement of z2 alone

[Maybeck (1979)]

Conditional density of position 
based on measurement of z2 alone

[Maybeck (1979)]measured position 2

uncertainty 2

Conditional density of position 
based on data z1 and z2

[Maybeck (1979)]
position estimate

uncertainty estimate

Propagation of the conditional density

[Maybeck (1979)]

Propagation of the conditional density

[Maybeck (1979)]

movement vector

expected position just prior 
to taking measurement 3

Propagation of the conditional density

[Maybeck (1979)]

movement vector

expected position just prior 
to taking measurement 3
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Propagation of the conditional density

z3

σx(t3)

measured position 3

uncertainty 3

Updating the conditional density after 
the third measurement

z3

σx(t3)

position uncertainty

position estimate

x(t3)

Questions?

Now let’s do the same thing
…but this time we’ll use math

How should we combine the two 
measurements?

[Maybeck (1979)]

σZ1

σZ2
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Calculating the new mean

Scaling Factor 1 Scaling Factor 2

Calculating the new mean

Scaling Factor 1 Scaling Factor 2

Calculating the new mean

Scaling Factor 1 Scaling Factor 2

Why is this not z1?

Calculating the new variance

[Maybeck (1979)]

σZ1

σZ2

Calculating the new variance

Scaling Factor 1 Scaling Factor 2

Calculating the new variance

Scaling Factor 1 Scaling Factor 2
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Calculating the new variance

Scaling Factor 1 Scaling Factor 2

Calculating the new variance

Calculating the new variance Calculating the new variance

Why is this result different from the 
one given in the paper?

Remember the Gaussian 
Properties? 
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Remember the Gaussian 
Properties?

• If and

• Then  

This is a2 not a

The scaling factors must be squared!

Scaling Factor 1 Scaling Factor 2

The scaling factors must be squared!

Scaling Factor 1 Scaling Factor 2

Therefore the new variance is 

Try to derive this on your own.

Another Way to Express 
The New Position

[Maybeck (1979)]

Another Way to Express 
The New Position

[Maybeck (1979)]
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Another Way to Express 
The New Position

[Maybeck (1979)]

The equation for the variance can 
also be rewritten as

[Maybeck (1979)]

Adding Movement

[Maybeck (1979)]

Adding Movement

[Maybeck (1979)]

Adding Movement

[Maybeck (1979)]

Properties of K

• If the measurement noise is large K is small

0

[Maybeck (1979)]
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THE END


