

The Kalman Filter (part 1)

March 5, 2007

HCI/ComS 575X: Computational Perception owa State University, SPRING 2007 Copyright © 2007, Alexander Stoytchev

Rudolf Emil Kalman

Definition

Why do we need a filter?

- No mathematical model of a real system is perfect information that can be provided to it. It processes all available measurements, regardless of their precision, to estimate
- Real world disturbances the current value of the variables of interest."

Definition

- A Kalman filter is simply an optimal recursive data processing algorithm
- Under some assumptions the Kalman filter is optimal with respect to virtually any criterion that makes sense.
- Imperfect Sensors

Application: Missile Tracking

Application: Robot Navigation

Application: Head Tracking

Brown and Hwang (1992)
"Introduction to Random Signals and Applied Kalman Filtering"

Ch 5: The Discrete Kalman Filter

Maybeck, Peter S. (1979)
Chapter 1 in " ${ }^{\text {Stochastic }}$ models, estimation, and control",

Mathematics in Science and
Engineering Series, Academic Press.

Arthur Gelb, Joseph Kasper, Raymond Nash, Charles Price, Arthur Sutherland (1974)

Applied Optimal Estimation
MIT Press.

A Simple Recursive Example

- Problem Statement:

Given the measurement sequence:
$z_{1}, z_{2}, \ldots, z_{n}$ find the mean

First Approach

1. Make the first measurement z_{1} Store z_{1} and estimate the mean as

$$
\mu_{1}=z_{1}
$$

2. Make the second measurement z_{2} Store z_{1} along with z_{2} and estimate the mean as

$$
\mu_{2}=\left(z_{1}+z_{2}\right) / 2
$$

First Approach (cont'd)

3. Make the third measurement z_{3} Store z_{3} along with z_{1} and z_{2} and estimate the mean as

$$
\mu_{3}=\left(z_{1}+z_{2}+z_{3}\right) / 3
$$

First Approach (cont'd)

n. Make the n-th measurement z_{n} Store z_{n} along with $z_{1}, z_{2}, \ldots, z_{n-1}$ and estimate the mean as

$$
\mu_{n}=\left(z_{1}+z_{2}+\ldots+z_{n}\right) / n
$$

Second Approach (cont'd)

2. Make the second measurement z_{2} Compute the estimate of the mean as a weighted sum of the previous estimate μ_{1} and the current measurement z_{2} :

$$
\mu_{2}=1 / 2 \mu_{1}+1 / 2 z_{2}
$$

Store μ_{2} and discard z_{2} and μ_{1}

Second Approach (cont'd)

3. Make the third measurement z_{3} Compute the estimate of the mean as a weighted sum of the previous estimate μ_{2} and the current measurement z_{3} :

$$
\mu_{3}=2 / 3 \mu_{2}+1 / 3 z_{3}
$$

Store μ_{3} and discard z_{3} and μ_{2}

Second Approach (cont'd)

n. Make the n-th measurement z_{n} Compute the estimate of the mean as a weighted sum of the previous estimate μ_{n-1} and the current measurement z_{n} :

$$
\mu_{n}=(n-1) / n \mu_{n-1}+1 / n z_{n}
$$

Store μ_{n} and discard z_{n} and μ_{n-1}

Comparison	
$\hat{x}_{1}=z_{1}$	
$\hat{x}_{2}=\frac{z_{1}+z_{2}}{2}$	$\hat{x}_{2}=z_{1}$
$\hat{x}_{3}=\frac{z_{1}+z_{2}+z_{3}}{3}$	$\hat{x}_{3}=\frac{2}{3} \hat{x}_{2}+\frac{1}{2} z_{3}$
$\hat{x}_{n}=\frac{z_{1}+z_{2}+\ldots+z_{n}}{n}$	$\hat{x}_{n}=\frac{n-1}{n} \hat{x}_{n-1}+\frac{1}{n} z_{n}$
Batch Method	Recursive Method

Second Approach (rewrite the general formula)

$$
\mu_{n}=(n-1) / n \mu_{n-1}+1 / n z_{n}
$$

Analysis

- The second procedure gives the same result as the first procedure.
- It uses the result for the previous step to help obtain an estimate at the current step.
- The difference is that it does not need to keep the sequence in memory.
Second Approach
(rewrite the general formula)
$\mu_{n}=(n-1) / n \mu_{n-1}+1 / n z_{n}$

The Gaussian Function

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}}
$$

Properties

- If $X \sim N\left(\mu, \sigma^{2}\right)$ and $Y=a X+b$
- Then $\quad Y \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)$
pdf for $Y=a X+b$
$f_{Y}(y)=\frac{1}{\sqrt{2 \pi a^{2} \sigma^{2}}} e^{-\frac{1}{2} \frac{(y-(a \mu+b))^{2}}{a^{2} \sigma^{2}}}$

Summation and Subtraction

$$
\begin{aligned}
\sigma_{K+Y}^{2} & =\sigma_{X}^{2}+\sigma_{Y}^{2} \\
\sigma_{X-Y}^{2} & =\sigma_{X}^{2}+\sigma_{Y}^{2}
\end{aligned}
$$

Conditional density of position based on measured value of z_{1}

Properties

Finally, if X_{1} and X_{2} are independent (see Section 2.5 below), $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$, and $X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$, then

$$
X_{1}+X_{2} \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right),
$$

(2.14)
and the density function becomes

\square
A simple example using diagrams

Conditional density of position based on measured value of z_{1}

Conditional density of position

 based on measurement of z_{2} alone

Questions?

How should we combine the two measurements?

Calculating the new mean
$\mu=$ Scaling Factor $1 \quad z_{1}+$ Scaling Factor 2

Calculating the new mean
$\mu=$ Scaling Factor $1 \quad z_{1}+$ Scaling Factor 2
$\mu=\left[\sigma_{z_{2}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right] z_{1}+\left[\sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right] z_{2}$

Calculating the new mean
$\mu=$ Scaling Factor $1 \quad z_{1}+$ Scaling Factor 2
$\left.\mu=\left[\sigma_{2}^{2}\right)\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right] z_{1}+\left[\sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right] z_{2}$
Why is this not z_{1} ?

Calculating the new variance
$\sigma^{2}=$ Scaling Factor 1

Calculating the new variance

Calculating the new variance

$$
\sigma^{2}=\underbrace{\sigma_{z_{2}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)} \sigma_{\sigma_{z_{1}}}^{\sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)}+\underbrace{\text { Scaling Factor 1 }}
$$

Calculating the new variance

$$
\sigma_{z_{2}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right) \quad \sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)
$$

$\sigma^{2}=\left[\sigma_{z_{2}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right] \sigma_{z_{1}}^{2}+\left[\sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right] \sigma_{z_{2}}^{2}$

Calculating the new variance

$$
\sigma^{2}=\left[\sigma_{z_{2}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right] \sigma_{\tilde{z}_{1}}^{2}+\left[\sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right] \sigma_{z_{2}}^{2}
$$

Calculating the new variance

$$
\begin{aligned}
& \sigma^{2}=\left[\sigma_{z_{2}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right] \sigma_{z_{1}}^{2}+\left[\sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right] \sigma_{z_{2}}^{2} \\
& \sigma^{2}=\frac{\sigma_{z_{2}}^{2}\left(\sigma_{z_{1}}^{2}+\sigma_{z_{1}}^{2} \sigma_{z_{2}}^{2}\right.}{\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)}=\frac{2 \sigma_{z_{1}}^{2} \sigma_{z_{2}}^{2}}{\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)}
\end{aligned}
$$

$$
2 / \sigma^{2}=\left(1 / \sigma_{z_{1}}^{2}\right)+\left(1 / \sigma_{z_{2}}^{2}\right)
$$

Why is this result different from the one given in the paper?
$1 / \sigma^{2}=\left(1 / \sigma_{z_{1}}^{2}\right)+\left(1 / \sigma_{z_{2}}^{2}\right)$

Remember the Gaussian
Properties?

$$
\begin{aligned}
\sigma_{X+Y}^{2} & =\sigma_{X}^{2}+\sigma_{Y}^{2} \\
\sigma_{X-Y}^{2} & =\sigma_{X}^{2}+\sigma_{Y}^{2}
\end{aligned}
$$

Remember the Gaussian

Properties?

- If $X \sim N\left(\mu, \sigma^{2}\right)$ and $Y=a X+b$
- Then $\quad Y \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)$

The scaling factors must be squared!

$$
\begin{aligned}
& \sigma^{2}=\underbrace{\square \text { Scaling Factor } 1} \sigma_{z_{1}}^{2}+\underbrace{\text { Scaling Factor 2 }} \sigma_{z_{2}}^{2} \\
& {\left[\sigma_{z_{2}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right]^{2} \quad\left[\sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right]^{2}} \\
& \sigma^{2}=\left[\sigma_{z_{2}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right]_{\sigma_{z_{1}}^{2}}^{2}+\left[\sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right] \sigma_{z_{2}}^{2}
\end{aligned}
$$

The scaling factors must be squared!

$$
\sigma^{2}=\underbrace{\text { Scaling Factor } 1 \sigma_{z_{1}}^{2} \underbrace{\underbrace{\text { Scaling Factor } 2}}_{\left[\sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right]^{2}} \sigma_{z_{2}}^{2}}_{\left[\sigma_{z_{2}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right]^{2}}
$$

Therefore the new variance is
$1 / \sigma^{2}=\left(1 / \sigma_{z_{1}}^{2}\right)+\left(1 / \sigma_{z_{2}}^{2}\right)$

Try to derive this on your own.

> Another Way to Express The New Position $\begin{gathered}\hat{x}\left(t_{2}\right)=\hat{x}\left(t_{1}\right)+K\left(t_{2}\right)\left[z_{2}-\hat{x}\left(t_{1}\right)\right] \\ K\left(t_{2}\right)=\sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\end{gathered}$

The equation for the variance can also be rewritten as

$$
\sigma_{x}^{2}\left(t_{2}\right)=\sigma_{x}^{2}\left(t_{1}\right)-K\left(t_{2}\right) \sigma_{x}^{2}\left(t_{1}\right)
$$

Adding Movement

$$
d x / d t=u+w
$$

Adding Movement

$$
\hat{x}\left(t_{3}^{-}\right)=\hat{x}\left(t_{2}\right)+u\left[t_{3}-t_{2}\right]
$$

$$
\sigma_{x}^{2}\left(t_{3}\right)=\sigma_{x}^{2}\left(t_{2}\right)+\sigma_{w}^{2}\left[t_{3}-t_{2}\right]
$$

Adding Movement

$$
\begin{gathered}
\hat{x}\left(t_{3}\right)=\hat{x}\left(t_{3}^{-}\right)+K\left(t_{3}\right)\left[z_{3}-\hat{x}\left(t_{3}^{-}\right)\right] \\
\sigma_{x}^{2}\left(t_{3}\right)=\sigma_{x}^{2}\left(t_{3}^{-}\right)-K\left(t_{3}\right) \sigma_{x}^{2}\left(t_{3}^{-}\right) \\
K\left(t_{3}\right)=\sigma_{x}^{2}\left(t_{3}^{-}\right) /\left[\sigma_{x}^{2}\left(t_{3}^{-}\right)+\sigma_{z_{3}}^{2}\right]
\end{gathered}
$$

Properties of K

- If the measurement noise is large K is small

$$
\begin{gathered}
K\left(t_{3}\right)=\sigma_{x}^{2}\left(t_{3}^{-}\right) /\left[\sigma_{x}^{2}\left(t_{3}^{-}\right)+\sigma_{z_{3}}^{2}\right] \\
\sigma_{z_{3}}^{2} \rightarrow \infty, K\left(t_{3}\right) \rightarrow 0
\end{gathered}
$$

