CprE 185: Intro to Problem Solving (using C) Midterm 2: Wednesday Oct 24, 2012

Student Name:		Student ID Number:				
Lab Section (circle one):	Mon 4-6,	Mon 6-8,	Tue 12-2,	Tue 2-4,	Wed 10-12	2
1. True/False Questio	ons (10 x 1p	each = 10p)				
(a) I forgot to write dow	rn my name,	student ID, a	and lab sectio	n.	TRUE / F	ALSE
(b) This is a valid C stat	ement: for	(i=0,j=10);i <j;i++,< th=""><th>j);</th><td>TRUE / F</td><td>ALSE</td></j;i++,<>	j);	TRUE / F	ALSE
(c) The increment stater	nent in a for	loop is optio	nal		TRUE / F	ALSE
(d) The time function re	turns the sec	onds elapsed	l since 1/1/19	80 GMT	TRUE / F	ALSE
(e) The default clause of	f a switch sta	atement is op	tional		TRUE / F	ALSE
(f) While loops cannot b	be used with	arrays.			TRUE / F	ALSE
(g) In the worst case ins	ertion sort is	faster than b	oubble sort		TRUE / F	ALSE
(h) A C function can tak	te an array as	s an input arg	gument		TRUE / F	ALSE
(i) The minimum value	that can be s	tored in an in	nteger is -214	7483648	TRUE / F	ALSE
(j) Linear search is faste	r than binary	y search			TRUE / F	ALSE

2. If-Else (5 x 2p each = 10 p)

Given the following if/else block where a, b, c, and d are integer variables,

if(a == b || c < b) {
 d = (a + b)/2;
} else if(b == 1 || c) {
 d = a + c%2;
} else
 d = 2*b;</pre>

determine the final value of the variable \mathbf{d} for the following initial conditions:

a)	a = 6;	b = 5;	c = 8;	d=
b)	a = 1;	b = 1;	c = 0;	d=
C)	a = 0;	b = 2;	c = 4;	d=
d)	a = 0;	b = 1;	c = 0;	d=
e)	a = 1;	b =-1;	c = 0;	d=

3. Code Snippets (2 x 5p each = 10p)

Write a C code snippet (3-6 lines max) that produces the results specified below.

(a) Print only the numbers greater than 5 and smaller than 20 that are stored in the integer array of size 10 named a. Separate the printed numbers with commas.

(b) Print the numbers between 1 and 1000 that are perfect squares. In other words, they can be represented as n*n, where n is a positive integer.

4. What is the Output? Explain. (2 x 5p each = 10p)

a)
int i=0;
for(;i>=0;i++);
 printf("%d\n",i);

```
b) Please indicate spaces with \_ and new lines with \n
int a,b;
for(a=0; a<=5; a++)
{
    for(b=0; b<=5; b++)
        if( (a==1) || (a==4))
            printf("#");
        else if((b==1) || (b==4))
            printf("#");
        else
            printf(" ");
            printf(" ");
            printf(" \n");
}</pre>
```

5. Calculating e (10 p)

The real constant **e**, which has many applications in Mathematics and Engineering, can be calculated with the following formula:

$$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

where '!' stands for factorial (N!= 1*2*3*...*N). Write a complete C program that approximates the value of e using the first 10 elements of the series given above.

6. Symmetric Matrix (15 points)

Symmetry is an interesting property in the mathematical world and particularly in matrix algebra. Your task is to determine if a given square matrix is symmetric.

As a refresher, a matrix is a 2-dimensional array of elements. A square matrix is a matrix that has the same number of rows and columns (i.e., the size is N x N). Transposition is one common operation that can be performed on a matrix. In this operation, the k-th row of the input matrix A becomes the k-th column in the output matrix B for all k=1,..,N. The square matrix A is symmetric if it is equivalent to its transpose B; that is, A = B.

The first line of the input contains the size N of the square matrix. The next N lines contain N elements each, representing the elements of the matrix. The output is simply "Symmetric" if the matrix is symmetric or "Not symmetric" if it is not.

HINT: Transposition is really just a reflection over the main diagonal of the matrix.

====== SAMPLE RUN ====== 3 4 2 1 2 5 3 1 3 9 Symmetric

====== SAMPLE RUN ====== 3 1 2 3 4 5 6 7 8 9 Not symmetric

Question	Max	Score
True/False	10	
If-Else	10	
Code Snippets	10	
What is the output	10	
Calculating e	10	
Symmetric Matrix	15	
Program 1 (lab)	10	
Program 2 (lab)	15	
Program 3 (lab)	15	
Program 4 (lab)	15	
Program 5 (lab)	15	
TOTAL:	135	

May the source be with you!