Cpr E 281 HW06 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Binary Number Representation and Arithmetic

Assigned Date: Seventh Week Due Date: Oct. 14, 2013

P1. (6 points) How many bits are required to represent each of the following sets of integers to represent unsigned integers in binary? (a) The integers from 0 to 255 inclusively (b) The integers from 0 to 4,095 inclusively (c) The integers from 0 to 1,234,567 inclusively				
P2. (6 points) How large a value can be represented by each of the unsigned binary quantities? (a) A 6-bit quantity. (b) A 10-bit quantity. (c) A 20-bit quantity.				
P3. (8 points) Convert each of the following binary numbers into decimal. Assume these quantities represent unsigned integers. (a) 1011; (b) 010110; (c) 01100010; (d) 10000000				
P4. (8 points) Convert each of the following decimal numbers into binary. (a) 7; (b) 14; (c) 103; (d) 511				
P5. (4 points) Suppose a jogger wants to use her ten fingers to count laps as she circles a track. Each finger can be in two different states to represent a binary digital. How many laps can she conveniently count? Briefly justify your answer.				
P6. (6 points) How many trinary digits are required to represent numbers in the following ranges? (a) The integers from 0 to 255 inclusively (b) The integers from 0 to 4,095 inclusively (c) The integers from 0 to 1,234,567 inclusively				
P7. (6 points) Convert each of the following binary numbers into hexadecimal. (a) 1010; (b) 10110; (c) 01101110				
P8 (6 points) Convert each of the following hexadecimal numbers into binary. (a) 3B; (b) 2A3; (c) EDCBA				

Cpr E 281 HW06

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

0001

Binary Number Representation and Arithmetic

Assigned Date: Seventh Week Due Date: Oct. 14, 2013

P9. (6 points) Convert ea (a) 111 ; (b) 156 ;	_	ecimal numbers in	to hexadecimal.	
P10. (6 points) Convert e (a) 2A; (b) 6B; (ach of the following h	nexadecimal numb	pers into decimal.	
translate the mathematic $5x^2 - 50x + 125 = 0$ with the solutions: $x = 5$ The $x = 5$ solution seeme	cal equations: and x = 8. d okay, but x = 8 was on-decimal number sy	puzzling. The prol stem. The explore	ers reflected on the way in which	
P12. (6 points) What is the (a) it is in sign-and-magner (b) it is in 1's complement (c) it is in 2's complement	itude representation? it representation?		01001 if:	
P13. (6 points) What is the representation? (a) 1100; (b) 0111	-	ng binary numbers	in 4-bit 2's complement	
P14. (6 points) Negate th (a) 0001; (b) 1110	-	mbers in 4-bit 2's	complement representation:	
P15. (6 points) Give the 4 (a) -6; (b) -1;	1-bit 2's complement (c) 6	representation fo	r the following decimal numbers:	
P16. (8 points) Assume the following numbers are represented as 4-bit words in 2's complement form. Perform the following operations and identify, in each case, whether or not an overflow occurs:				
(a) 1111 (b)	1000 (c) 1111	(d) 1000		

1111

0001

1111