Arithmetic Circuits and Combinational-Circuit Building Blocks Assigned Date: Eighth Week Due Date: Mar. 10, 2014

P1. (10 points) Show that the circuit in Figure 3.4 implements the full-adder specified in Figure 3.3(a).

P2. (15 points) Consider the addition of the two n-bit 2's complement numbers $X=x_{n-1} X_{n-2} \ldots$ $x_{1} x_{0}$ and $Y=y_{n-1} y_{n-2} \ldots y_{1} y_{0}$. Suppose the sum is $s_{n-1} s_{n-2} \ldots s_{1} s_{0}$ and the carry is $c_{n} c_{n-1} \ldots c_{2} c_{1}$. (a) If X is positive, Y is negative, and $c_{n-1}=0$, what should be the values of c_{n} and s_{n-1} ? Will overflow occur?
(b) If X is negative, Y is negative, and $c_{n-1}=0$, what should be the values of c_{n} and s_{n-1} ? Will overflow occur?
(c) Following the idea in part (a) and (b), please construct a truth table list the values of c_{n} and s_{n-1} for all combinations of the sign of X, the sign of Y, and the value of c_{n-1}. For each combination, please also state if overflow occurs or not.
(d) Based on the truth table in part (c), prove that Overflow $=c_{n} \oplus c_{n-1}$.

P3. (10 points) Design a circuit to add 1 to a given n-bit number (i.e., design an increment-by-1 circuit) using n half-adders.

P4. (10 points) Represent the decimal number -7.875 in IEEE 754 single-precision floating-point format.

P5. (10 points) What is the decimal value of the following IEEE 754 single-precision floatingpoint number?
00111111010100000000000000000000

P6. (10 points) Design a 8×1 multiplexer using seven 2×1 multiplexers. Please label all signals clearly.

P7. (10 points) The question considers the design of a 8×1 multiplexer using gates. Assume the data inputs are $\mathrm{IO}, \ldots, \mathrm{I} 7$ and the select inputs are $\mathrm{S} 2, \mathrm{~S} 1$ and S 0 .
(a) Write a sum-of-products expression for the 8×1 multiplexer.
(b) Implement the expression in part (a) using NOT and NAND gates with any number of inputs. Please use as few gates as possible.

P8. (10 points) Consider a function F with 4 bits of input $A_{3}, A_{2}, A_{1}, A_{0}$ such that the output of F is 1 if the unsigned binary number represented by $A_{3} A_{2} A_{1} A_{0}$ is a prime (i.e., $2,3,5,7,11$ or 13). Otherwise, the output of F is 0 .
(a) Write the truth table for F .
(b) Implement F using a 16×1 MUX and nothing else.
(c) Implement F using a 8×1 MUX, some AND gates, some OR gates, and some NOT gates.

Cpre 281 HW07
ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY
Arithmetic Circuits and Combinational-Circuit Building Blocks Assigned Date: Eighth Week

Due Date: Mar. 10, 2014

P9. (5 points) Write the truth table for a 1-to-2 decoder. Draw a circuit which implements a 1-to- 2 decoder using AND gates, OR gates and NOT gates only.

P10. (10 points) Given a supply of 2-to-4 decoders, show how to get a 4-to-16 decoder circuit. Assume each of the 2-to-4 decoders has an ENABLE input (ENABLE = 1 enables the decoder), but you need not include an enable capability on the 4-to-16 decoder circuit.

