
A r I 1A lIl* f n | | closed circuit, and the symbol 1 (unity) toA Symbolic t6tnaiysis or ue ay and represent the hindrance of an open cir-
cuit. Thus when the circuit a-b is open
Xab and when closed Xab = 0.

Swi chi, Circuits Two hindrances Xab and Xc will be

said to be equal if whenever the circuit
a-b is open, the circuit c-d is open, and

By CLAUDE E. SHANNON whenever a-b is closed, c-d is closed.
ENROLLED STUDENT AIEE Now let the symbol + (plus) be defined

to mean the series connection of the two-
I. Introduction bolic study of logic. For the synthesis terminal circuits whose hindrances are

problem the desired characteristics are added together. Thus Xab + Xd is the

N THE CONTROL and protective first written as a system of equations, and hindrance of the circuit a-d when b and c

* circuits of complex electrical systems the equations are then manipulated into are connected together. Similarly the
it is frequently necessary to make in- the form representing the simplest cir- product of two hindrances X,,b'X,4 or

tricate interconnections of relay contacts cuit. The circuit may then be immedi- more briefly XabXc, will be defined to
and switches. Examples of these cir- ately drawn from the equations. By mean the hindrance of the circuit formed
cuits occur in automatic telephone ex- this method it is always possible to find by connecting the circuits a-b and c-d in
changes, industrial motor-control equip- the simplest circuit containing only parallel. A relay contact or switch will
ment, and in almost any circuits designed series and parallel connections, and in be represented in a circuit by the symbol
to perform complex operations auto- some cases the simplest circuit containing in figure 1, the letter being the cor-
matically. In this paper a mathematical any type of connection. responding hindrance function. Figure
analysis of certain of the properties of Our notation is taken chiefly from 2 shows the interpretation of the plus
such networks will be made. Particular symbolic logic. Of the many systems in sign and figure 3 the multiplication sign.
attention will be given to the problem of common use we have chosen the one This choice of symbols makes the ma-
network synthesis. Given certain char- which seems simplest and most suggestive nipulation of hindrances very similar to
acteristics, it is required to find a circuit for our interpretation. Some of our ordinary numerical algebra.
incorporating these characteristics. The phraseology, as node, mesh, delta, wye, It is evident that with the above defi-
solution of this type of problem is not etc., is borrowed from ordinary network nitions the following postulates will hold:
unique and methods of finding those par-
ticular circuits requiring the least num- Postulates
ber of relay contacts and switch blades

1. a. 0 * 0 = 0 A closed circuit in parallel with a closed circuit is a closed
will be studied. Methods will also be circuit.
described for finding any number of cir- b. 1 + 1 = I An open circuit in series with an open circuit is an open
cuits equivalent to a given circuit in all circuit.
operating characteristics. It will be 2. a. 1 + 0 = 0 + 1 = 1 An open circuit in series with a closed circuit in either
shown that several of the well-known order (i.e., whether the open circuit is to the right or left
th*eorems on impedance networks have of the closed circuit) is an open circuit.

b. O * 1 = 1 0 = O A closed circuit in parallel with an open circuit in either
roughly analogous theorems in relay order is a closed circuit.
circuits. Notable among these are the 3. a. 0 + 0 = 0 A closed circuit in series with a closed circuit is a closed

delta-wye and star-mesh transformations, circuit.
and the duality theorem. b. 1 1 = 1 An open circuit in parallel with an open circuit is an open
The method of attack on these prob- circuit.

lems may be described briefly as follows: 4 At any given time either X c 0 or X = 1.
any circuit is represented by a set of
equations, the terms of the equations..correspondingtohe variou rel atn theory for similar concepts in switching These are sufficient to develop all the

circuits. theorems which will be used in connection
switches in the circuit. A calculus is with circuits containing only series and
developed for manipulating these equa- II Series-Parallel parallel connections. The postulates are
tions by simple mathematical processes, Two-Terminal Circuits arranged in pairs to emphasize a duality
most of which are similar to ordinary relationship between the operations of
algebraic algorisms. This calculus is FUNDAMENTAL DEFINITIONS addition and multiplication and the
shown to be exactly analogous to the AND POSTULATES quantities zero and one. Thus, if in
calculus of -propositions used in the sym- We shall limit our treatment to cir- any of the a postulates the zero's are re-

cuits containing only relay contacts and placed by one's and the multiplications
Paper number 38-80, recommended by the AIEE switches, and therefore at any given time by additions and vice versa, the cor-
committees on communication and basic sciences the circuit between any two terminals responding b postulate will result. This
and presented at the AIEE summer convention,
Washington, D. C., June 20-24, 1938. Manuscript must be either open (infinite impedance) fact is of great importance. It gives
submitted March 1. 1938; made available for or closed (zero impedance). Let us as- each theorem a dual theorem, it being

preprintingMay27, 1938. ~~sociate a symbol Xai or more simply X, necessary to prove only one to establish

department of electrical engineering at MaWssachu- wtthtemnlaadb.Tivn- both. The only one of these postulates
setts Institute of Technology, Cambridge. This able, a function of time, will be called which differs from ordinary algebra is lb.
paper is an abstract of a thesis presented at MIT
for the degree of master of science. The author is the hindrance of the two-terminal cir- However, this enables great simplifica-
indebted to Doctor F. L. Hitchcock, Doctor cuit a-b. The symbol 0 (zero) will he tions in the manipulation of these
Vannevar Bush, and Doctor 5. H. Caldwell, all of
MIT, for helpful encouragement and criticism, used to represent the hindrance of a symbols.
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THEOREMS (3b), however, is not true inr numerical hindrance functions above. Usually the
algebra. two subjects are developed simultane-

In this section a number of theorems We shall now define a new operation to ously from the same set of postulates,
governing the combination of hindrances be called negation. The negative of a except for the addition in the case of the

will be given. Inasmuch as any of the hindrance X will be written X' and is calculus of propositions of a postulate
theorems may be proved by a very defined as a variable which is equal to 1 equivalent to postulate 4 above. E. V.

Huntington4 gives the following set of
x postulates for symbolic logic:

Xab x Y X+Y [ X.Y
a o- b -__0 o-Qo o0- = -0 °" * -_-' 0' 1. The class K contains at least two dis-

y
o Ftinct elements.

simple process, the proofs will not be Figure 1 (left). Symbol for hindrance 2. If a and b are in the class K then

given except for an illustrative example. function a + b is in the class K.

The method of proof is that of "perfect Figure 2 (middle). Interpretation of addition 3. a + b = b + a
induction," i.e., the verification of the
theorem for all possible cases. Since by Figure 3 (right). Interpretation of multipli- 4. (a + b) + c = a ± (b + c)

postulate 4 each variable is limited to cation 5. a + a = a
the values 0 and 1, this is a simple matter. 6. ab + ab' = a where ab IS defined as
Some of the theorems may be proved
more elegantly by recourse to previous when X equals 0 and equal to 0 when X (a'

f
b')'

theorems, but the method of perfect in- equals 1. If X is the dr o If we let the class K be the class consist-
duction is so universal that it is probably the make ontats of aring of the two elements and 1 then these

hindrance of the break contacts of the
to be preferred. same relay. The definition of the nega- postulates follow from those given in the

samerely.Te dfiniionof te nga- first section. Also postulates 1, 2, and 3
X + Y = Y + X (la) tive of a hindrance gives the following givnt can be deducedfo Hunting-

given there can be deduced from Hunting-
XY = YX (lb) theorems: ton's postulates. Adding 4 and restrict-

X + (Y + Z) = (X + Y) + Z (2a) x + X' = 1 (6a) ing our discussion to the calculus of propo-
sitions, it is evident that a perfect

X(YZ) = (X Y)Z (2b) XX' = 0 (6b) analogy exists between the calculus for

X(Y + Z) = XY + XZ (3a) °' = 1 (7a) switching circuits and this branch of
X(Y +7b)Z)=XY+ xz(3asymbolic logic.** The two interpreta-

X + YZ = (X + Y)(X + Z) (3b) 1' = 0 (7b) tions of the symbols are shown in table I.

1-X = X (4a) (X')Y = X (8) Due to this analogy any theorem of the
calculus of propositions is also a true

o + X-X (4b) ANALOGUE WITH THE theorem if interpreted in terms of relay

1 + X = 1 (5a) CALCULUS OF PROPOSITIONS circuits. The remaining theorems in

O-X = O (5b) We are now in a position to demon- this section are taken directly from this
strate the equivalence of this calculus with field.

For example, to prove theorem 4a, certain elementary parts of the calculus De Morgan's theorem:

note that X is either 0 or 1. If it is 0, of propositions. The algebra of logie1-3 (X + Y + Z . .) = X'. Y'.Z' (9a)

the theorem follows from postulate 2b; originated by George Boole, is a sym-
if 1, it follows from postulate 3b. Theo- bolic method of investigating logical (X-Y-Z Y)' = X' + Y'+ Z'+

rem 4b now follows by the duality princi- relationships. The symbols of Boolean (9b)

ple, replacing the 1 by 0 and the - by +. algebra admit of two logical interpreta- This theorem gives the negative of a sum
Due to the associative laws (2a and 2b) tions. If interpreted in terms of classes, or product in terms of the negatives of

parentheses may be omitted in a sum or the variables are not limited to the two the summands or factors. It may be

product of several terms without am- possible values 0 and 1. This interpre- easily verified for two terms by substitut-
biguity. The z and H symbols will be tation is known as the algebra of classes- ing all possible values and then extended
used as in ordinary algebra. If, however, the terms are taken to rep- to any number n of variables by mathe-
The distributive law (3a) makes it resent propositions, we have the calculus matical induction.

possible to "multiply out" products and of propositions in which variables are A function of certain variables X1,
to factor sums. The dual of this theorem limited to the values 0 and 1,* as are the X2 .X is any expression formed

from the variables with the operations
of addition, multiplication, and negation.

Table 1. Analogue Between the Calculus of Propositions and the Symbolic Relay Analysis
1. For all numbered references, see list at end of

Symbol Interpretation in Relay Circuits Interpretation in the Calculus of Propositions paper.
* This refers only to the classical theory of the
calculus of propositions. Recently some work has

X....The circuit X ....................Theproposition X been done with logical systems in which proposi-

0....The circuit is closed .................... The proposition is false tions may have more than two "truth values."

1....The circuit is open .................... The proposition is true ** This analogy may also be seen from a slightly
X + Y .. ..The series connection of circuits X Y ....................The proposition which is true if either X or Y different viewpoint. Instead of associating Xab

XY....The parallel connection of circuiits X and Y .................... The proposition which is true if both X and Y prpoiretiowtha the circuita-tab is open. Then all
are true the symbols are directly interpreted as propositions

.Tlhe circuit which is open when X is closed, .....................Thecontradictory of proposition X and the operations of addition and multiplication

and closed when X is open will be seen to represent series and parallel connec-
. The circuits open and close simultaneously....................Each proposition implies the other tions.
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The notation f(Xi, X2....... Xn) will be a break contact. This is shown in theorems given above are always suf-
used to represent a function. Thus we figure 4. Similarly by 11 any other ficient to do this. A little practice in
might have f (X, Y, Z) = XY + X' variable need appear no more than four the manipulation of these symbols is all
(Y' + Z'). In infinitesimal calculus it times (two make and two break contacts), that is required. Fortunately most of
is shown that any function (providing it etc. the theorems are exactly the same as
is continuous and all derivatives are con- A generalization of De Morgan's those of numerical algebra-the associa-
tinuous) may be expanded in a Taylor theorem is represented symbolically in tive, commutative, and distributive laws
series. A somewhat similar expansion is the following equation: of algebra hold here. The writer has
possible in the calculus of propositions. found theorems 3, 6, 9, 14, 15, 16a, 17,
To develop the series expansion of func- f(X,, X2 . Xl, ,+, ;) = , and 18 to be especially useful in the sim-
tions first note the following equations. f(X1, X2'. . X s +) (13) plification of complex expressions.

f(X1, X2,; * Xn) = x1 .f(1, x2 ... X~) + By this we mean that the negative of any Frequently a function may be written
XI -f(O, X2 . Xn) (lOa) function may be obtained by replacing minseveral ways, each requiring the same

-X X [(each variable by its negative and inter- minmum number of elements. In such(Xi . . . X") = [f(O, X2 . .. Xn) + Xl] changing the + and * symbols. Explicit a case the choice of circuit may be made
[f(l, X2 ... Xn) + XI1 (10b) and implicit parentheses will, of course, arbitrarily from among these, or from

These reduce to identities if we let Xi remain in the same places. For ex- other considerations.
equal either 0 or 1. In these equations ample, the negative of X + Y * (Z + As an example of the simplification of
the function f is said to be expanded WX') will be X'[Y' + Z'(W' + X) expressions consider the circuit shown in

figure 5. The hindrance function Xab
for this circuit will be:

f (Xi Xn) fo (O oo) Xab = W + W'(X + Y) + (X + Z)
o o0- - I JI4, , J -L_= , # (S + W' + Z) (Z' + Y+ S'V)

1-o oo o o == W+X+Y+(X+Z)-
f(i,X2--xn) xl XI f(I,X2..Xni) (S+ 1 +Z) (Z' + Y + S'V)

= W+X + Y+Z.(Z' +S'V)

about X1. The coefficients of Xi and Xi' Figure 4. Expansion about one variable These reductions were made with 17b
in 1Oa are functions of the (n-1) variables using first W, then X and Y as the "X"
X2. . . Xn, and may thus be expanded of 17b. Now multiplying out:
about any of these variables in the same Some other theorems useful in simpli-
manner. The additive terms in 10b also fying expressions are given below: Xab = W + X + Y + ZZ' + ZS'V
may be expanded in this manner. Ex- X = +X = X ±X +ZX = etc. (14a)S'V
panding about X2 we have:

X = X-X = X.XX = etc, (14b) The circuit corresponding to this ex-
f(Xl . . X.) = X2X2f(l, 1, X3.. Xn) + pression is shown in figure 6. Note the

X1X2'f(1, 0, X3 ... Xn) + X + XY = X (15a) large reduction in the number of ele-
Xi'X2f(0,1, X3 ... Xn)

(a X(X + Y) X (15b) ments.
X,'X2'f(0, 0, X3 . . . Xn) (Ila) ( + ) = X (15b) It is convenient in drawing circuits to

f(X.. . Xn) = [XI +X2-+f(0, 0, X3 . . . Xn)]* XY + X'Z = XY + X Z + YZ (16a) label a relay with the same letter as the
[XI + X2' + f(O, 1, X3 .. Xn)]I (X + Y)(X' + Z) =

[XI-' +X2 + f(l,O0, X3. . .Xn)1* (X + Y)(Xl + Z) (Y+ Z) (16b)
[Xl' + X2' + f(l, 1, X3 .. Xn)I (lIb) SI

Continuing this process n times we will
Xf(X, Y, Z,...) = Xf(1, Y, Z, ...) (17a) x Y ° z

Continuing~ ~ ~ ~~~~~X fX
thiproes

X
tieweowil Zw r° oO)a-n s0,_OVOY z barrive at the complete series expansion X +7f(X, Y Z,...) = X +f(0, Y

b
Z,..*) a w,_Wo-_w,-0 Sb

having the form: (17b) X z

f(Xi * . .X,) =f(l, 1, 1 ... 1)XlX2,-Xn + X'f(X, Y, Z, --.).= X'f(O, Y, Z, ..) Figure 5. Circuit to be simplified
f(O, 1, 1 . .. 1) XI'X2 . .. Xn + . . . + 8a

f(G,0,0 ... O)XI'X2' ...-X,, (12a) X, +f(X, Y, Z,...) =X' +f(l, Y,Z,...)
(18b) rzlf(Xl ... X) = [Xi + X2 + X..Xn + All o W

Xn;.+ f(l, 1 *. 1)] All of these theorems may be proved a-o w,-, bXn' + Al1 -- I 12b
by the method of perfect induction.

By 12a, f is equal to the sum of the prod- Any expression formed with the opera- Figure 6. Simplification of figure 5
ucts formed by permuting primes on the tions of addition, multiplication, and
terms of X1X2. . .Xn in all possible ways negation represents explicitly a circuit
and giving each product a coefficient containing only series and parallel con-
equal to the value of the functionwhen nections. Such a circuit will be called/
that product isl1. Similarly for 12b. a series-parallel circuit. Each letter in |/ 2 7
As an application of the series expan- an expression of this sort represents a N_____

sion it should be noted that if we wish to make or break relay contact, or a switch o _____
find a circuit representing any given blade and contact. To find the circuit \ _
function we can always expand the fnnc- requiring the least number of contacts, \X
tion by either 10a or lOb in such a way it is therefore necessary to manipulate ,
that any given variable appears at most the expression into the form in which the Figure 7. General constant-voltage relay
twice, once as amake contact and once as least number o:f letters appear. The circuit
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b b transformations, if they exist, are unique. connections other than those of a series-

R/\S& In hindrance networks the transforma- parallel type. The "bridge" of figure
R S RS tions always exist and are not unique. 10, for example, is a non-series-parallelp QX Those given here are the simplest in that network. These networks will be treated

ca O T o~X\ C a S lo CTthey require the least number of elements. by first reducing to an equivalent series-
The delta-to-wye transformation is shown parallel circuit. Three methods have

Figure 8. Delta-wye transformation in figure 8. These two networks are been developed for finding the equivalent
equivalent with respect to the three of a network such as the bridge.

b b terminals a, b, and c, since by the distribu- The first is the obvious method of ap-
A A tive law Xab = R(S + T) = RS + RT plying the transformations until the net-
R and similarly for the other pairs of termi- work is of the series-parallel type and

R+S R+T nals a-c and b-c. then writing the hindrance function by
S ell T / The wye-to-delta transformation is inspection. This process is exactly the

a A c a L To c shown in figure 9. This follows from the same as is used in simplifying the complex
S+T fact that Xab = R + S = (R + S) . impedance networks. To apply this to

Figure 9. Wye-delta transformation (R + T + T + S), etc. An n-point the circuit of figure 10, first we may
star also has a mesh equivalent with the eliminate the node c, by applying the
central junction point eliminated. This star-to-mesh transformation to the star

hindrance of make contacts of the relay. is formed exactly as in the simple three- a-c, b-c, d-c. This gives the network of
Thus if a relay is connected to a source of point star, by connecting each pair of figure 11. The hindrance function may
voltage through a network whose hin- terminals of the mesh through a hind- be written down from inspection for this
drance function is X, the relay and any rance which is the sum of the corre- network.
make contacts on it would be labeled X. sponding arms of the star. This may be
Break contacts would be labeled X'. proved by mathematical induction. We Xab = (R + S)[U(R + T) + V(T + S)]
This assumes that the relay operates in- have shown it to be true for n -= 3. This may be written:
stantly and that the make contacts Now assuming it true for n - 1, we shall
close and the break contacts open simul- prove it for n. Suppose we construct a Xab = R(U± STV + T(V + STU
taneously. Cases in which there is a mesh circuit from the given n - point
time delay will be treated later. star according to this method. Each The second method of analysis is to

corner of the mesh will be an n - 1-point draw all possible paths between the points
III. Multiterminal and star and since we have assumed the under consideration through the network.

Non-Series-Parallel Circuits These paths are drawn along the lines
c representing the component hindrance

EQUIVALENCE OF n-TERMINAL NETWORKS elements of the circuit. If any one of
The usual relay control circuit will R S these paths has zero hindrance, the re-

take the form of figure 7, where X,, a T E quired function must be zero. Hence if
X2, . . . X, are relays or other devices c the result is written as a product, the
controlled by the circuit and N is a net- u 'XlgOv hindrance of each path will be a factor
work of relay contacts and switches. d of this product. The required result
It is desirable to find transformations may therefore be written as the product
that may be applied to N which will keep Figure 10. Non-series-parallel circuit of the hindrances of all possible paths
the operation of all the relays x.... X, between the two points. Paths which
the same. So far we have only considered theorem true for n - 1 we may replace touch the same point more than once
transformations which may be applied to the nth corner by its mesh equivalent. need not be considered. In figure 12 this
a two-terminal network keeping the opera- If Y0j was the hindrance of the original method is applied to the bridge. The
tion of one relay in series with this net- star from the central node 0 to the point paths are shown dotted. The function is
work the same. To this end we define j, then the reduced mesh will have the therefore given by:
equivalence of n-terminal networks as hindrance (VY0 + Y0O) - (VYO + YOn + Xab = (R + S) (U ± V) (R + T + V)
follows. Definition: Two n-terminal net- Y,r + Y00) connecting nodes r and s. (U + T + S`
works M and N will be said to be But this reduces to Y<,YOr which is the = RU + SV + RTV + UTS
equivalent with respect to these n termi- correct value, since the original n-point = R( U + TV) + S( V + TU)
nals if and only if Xjk = Yik; j, k = 1, star with the nth arm deleted becomes an
2, 3.... n, where X, is the hindrance of n - 1-point star and by our assumption The same result is thus obtained as with
N (considered a two-terminal network) may be replaced by a mesh having this the first method.
between terminals j and k, and Yjk is hindrance connecting nodes r and s.
that for M between the corresponding Thereforethetwonetworksareequivalent
terminals. Under this definition the with respect to the first n - 1 terminals. aR+
equivalences of the preceding sections By elimiinating other nodes than the nth, a R+7S b
were with respect to two terminals, or by symmetry, the equivalence with ..\ ,/0

respect to all n terminals is demonstrated. . uR+T -S
STAR-MESH AND DELTA-WYEOXC SDPV
TRANSFORMATIONS HINDRANCE FUNCTION OF A\\/
As in ordinary network theory there NON-SERIES-PARALLEL NETWFORKX

exist star-to-mesh and delta-to-wye trans- The methods of part II were not suf- Figure 11. Hindrance function by means of
formations. In impedance circuits these ficient to handle circuits which contained transformations
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The third method is to draw all pos- pletely define the operation of the system. versed), and second, this choice makes the
sible lines which would break the circuit The right-hand members will be known hindrance functions closely analogous to
between the points under consideration, functions involving the various dependent impedances. Under the alternative defi-
making the lines go through the hin- and independent variables and given the nitions they would be more similar to
drances of the circuit. The result is starting conditions and the values of the admittances, which are less commonly
written as a sum, each term correspond- independent variables the dependent used.
ing to a certain line. These terms are variables may be computed. Sometimes the relation XY' = 0 ob-
the products of all the hindrances on the A transformation will now be described tains between two relays X and Y. This
line. The justification of the method is for reducing the number of elements re-
similar to that for the second method. quired to realize a set of simultaneous
This method is applied to the bridge in equations. This transformation keeps C W
figure 13. XO, (k - 1, 2 . . . n) invariant, but 0w-

This again gives for the hindrance of Xjk (j, k 1, 2 . n) may be changed, o Bo-_o
X

the network: so that the new network may not be
equivalent in the strict sense defined to

X -b= RU + SV + RTV + STU the old one. The operation of all the 0-t C Y
= R( U + TV) + S( V + TU) relays will be the same, however. This Y

The third method is usually the most simplification is only applicable if the E Z
convenient and rapid, for it gives the Xok functions are written as sums and t F

result directly as a sum. It seems much certain terms are common to two or
easier to handle sums than products due, more equations. For example suppose Figure 14. Example of reduction of simul-
no doubt, to the fact that in ordinary the set of equations is as follows: taneousequations
algebra we have the distributive law
X(Y + Z) = XY + XZ +Z)un i X =A +B+WX is true if V can operate only if X is
dual X + YZ = (X + Y) (X + Z). It 'Y = A + CY operated. This frequently occurs in
is, however, sometimes difficult to apply Z = EZ + F what is known as a sequential system.
the third method to nonplanar networks In a circuit of this type the relays can
(networks which cannot be drawn on a This may be realized with the circuit only operate in a certain order or se-
plane without crossing lines) and in this of figure 14, using only one A element quence, the operation of one relay in
case one of the other two methods may be for the three places where A occurs and general "preparing" the circuit so that
used. the next in order can operate. If X pre-

SIMULTANEOUS EQUATIONS cedes Yin the sequence and both are con-
Rx / >/, strained to remain operated until the

In analyzing a given circuit it is con- R ~ tandt eanoeae ni hI nyng lecru tocn,>1' ,, ,,sequence is finished then this condition
venient to divide the various variables a b will be fulfilled. In such a case the
into two classes. Hindrance elements D , ,, 'N az following equations hold and may some-
which are directly controlled by a source u v times be used for simplification of ex-
external to the circuit under considera- -pressions. If XYV' = 0, then
tion will be called independent variables. Figure 13. Hindrance function as a sum of
Thesewill include hand-operated switches, products X' Y' = Y,
2ontacts on external relays, etc. Relays XY = X
and other devices controlled by the net- X' + Y =1
work will be called dependent variables. only one B element for its two appear-

X + Y=X
We shall, in general, use the earlier letters ances. The justification is quite obvious.
of the alphabet to represent independent This may be indicated symbolically by These may be proved by adding X Y' = 0
variables and the later letters for depend- drawing a vertical line after the terms to the left-hand member or multiplying
ent variables. In figure 7 the dependent common to the various equations, as it by X' + Y = 1, thus not changing
variables are Xi, X2 . . . Xn. Xk will shown below. the value. For example to prove the
evidently be operated if and only if first one, add XY' to X'Y' and factor.
XOk = 0, where XOk is the hindrance W = B + CW
function of N between terminals 0 and X = A + WX SPECIAL TYPES OF RELAYS AND SWITCHES
k. That is: Y = CY

Z = F + EZ In certaini types of circuits it is neces-
Xk = Xok k = 1,2, ...n sary to preserve a definite sequential re-

Thisisa system of equations which com-
It follows from the principle of duality lation in the operation of the contacts of a

Thisisaystemof equations whichcom- that if we had defined multiplication to relay. This is done with make-before-
represent series connection, and addition break (or continuity) and break-make

,-y for parallel connection, exactly the same (or transfer) contacts. In handling this
, R/- ,0> theorems of manipulation would be ob- type of circuit the simplest method seems

a
/- INs tamned. There were two reasons for to be to assume in setting up the equations

\ ° u"-. ' , ,-v 'as has been mentioned, it is easier to simultaneously, and after all simplifica-
" - manipulate sums than products and the tions of the equations have been made and
"-- ~~~~transformation just described can only the resulting circuit drawn, the required

Figure 12. Hindrance function as a product be applied to sums (for constant-current type of contact sequence is found from
of sums relay circuits this condition is exactly re- inspection.
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Relays having a time delay in operat- 2n different products of this form. Simi- relay contacts to realize, and find the
ing or deoperating may be treated simi- larly each product may have the coef- number of contacts required. In order
larly or by shifting the time axis. Thus ficient 0 or the coefficient 1 so there are to do this, it is necessary to define a func-
if a relay coil is connected to a battery 22n possible sums of this sort. Hence we tion of two variables known as the sum
through a hindrance X, and the relay have the theorem: The number of func- modulo two or disjunct of the variables.
has a delay of p seconds in operating and tions obtainable from n variables is 2". This function is written XI DX and is
releasing, then the hindrance function of Each of these sums will represent a dif- defined by the equation:
the contacts of the relay will also be X, ferent function, but some of the functions
but at a time p seconds later. This may may actually involve less than n vari- XI 0 X2 = X1X2' + X1'X2
be indicated by writing X(t) for the hin- ables (that is, they are of such a form that It is easy to show that the sum modulo
drance in series with the relay, and X for one or more of the n variables, say two obeys the commutative, associative,
(t - p) for that of the relay contacts. Xk, we have identically fI Xk=O =fI Xk =1 and the distrbutive law with respect to
There are many special types of relays so that under no conditions does the multiplication, that is

and switches for particular purposes, such value of the function depend on the value
as the stepping switches and selector Xk). Thus for two variables, X and Y, X1 0D X2 = X2 0 Xl
switches of various sorts, multiwinding among the 16 functions obtained will be (Xi 0 X2) 0 X3 = Xi 0 (X2 0 X3)
relays, cross-bar switches; etc. The opera- X, Y, X', Y', 0, and 1 which do not in- Xi(X2 0 X3) = X1X2 0 XiX3
tion of all these types may be described volve both X and Y. To find the num- Also:
with the words "or," "and," "if," "oper- ber of functions which actually involve
ated," and "not operated." This is a all of the n variables we proceed as fol- (Xi 0 X2)' = Xi 0D X2' = Xi' 0 X2
sufficient condition that they may be de- lows. Let +(n) be the number. Then Xl 0 =X1 ,
scribed in terms of hindrance functions by the theorem just given: Xl 1 = X1
with the operations of addition, multipli- n Since the sum modulo two obeys the as-
cation, negation, and equality. Thus a 22n = E (n) 0 (k) sociative law, we may omit parentheses in
two-winding relay might be so con- k=O a sum of several terms without ambiguity.
structed that it is operated if the first or where (n) = n!/k! (n - k)! is the number The sum modulo two of the n variables
the second winding is operated (acti- of Combinations of n things taken k at a Xl, X2 . . . Xn will for convenience be
vated) and the first and the second wind- time. That is, the total number of func- written:
ings are not operated. If the first wind- tions obtainable from n variables is equal

n

ing is X7 and the second Y, the hindrance to the sum of the numbers of those func- Xl 0 X2 0 X3 0D Xn = 2 Xk
function of make contacts on the relay tions obtainable from each possible selec- k=1

will then be XY + X' Y'. Usually, how- tion of variables from these n which ac- Theorem: The two functions of n
ever, thesespecialreteselawhchyc-sTeorm:cheuwofnctonsoftever, these special relays occur only at tually involve all the variables in the variables which require the most ele-

the end of a complex circuit and may be selection. Solving for q (n) gives:
omitted entirely from the calculations to
be added after the rest of the circuit is 22n c

designed. 4()Z()(k) 4I

Sometimes a relay X is to operate when ,
a circuit R closes and to remain closed Bysubstitutingfor (n -1) on the right I
independent of R until a circuit S opens. the similar expression found by replacing b

Such a circuit is known as a lock-in cir- n by n-1 in this equation, then similarly a
cuit. Its equation is: substituting for (n -2) in the expression

thus obtained, etc., an equation may be "
X = RX + S obtained involving only +(n). This equa- d

Replacing X by X' gives: tion may then be simplified to the form:
Figure 17. Superposition of a network and

X' = RX' + S (n(n) = E (i) 22k(1_)n-k its dual

k=Oic=O
or

As n increases this expression approaches ments (relay contacts) in a series-parallel
X = (R' + X)S' its leading term 22n asymptotically. The n

In this case X is opened when R closes and error in using only this term for n = 5 realization are 2:Xk and :EXk ', each of

remains open until S opens. is less than 0.01 per cent. which requires (3.2nt
We shall now determine those func- This will be proved by mathematical

IV. Synthesis of Networks tions of n variables which require the most induction. First note that it is true for
n = 2. There are ten functions involving

SOME GENERAL THEOREMS ON ESH C C two variables, namely, XY XY, X ± ,
NETWORKS AND FUNCTIONSR 7\ ' X',X+YX',X+ ',X ,

It hs ben sownhatny uncton u\ v \b Zu'| vt X'+ Y', XY' + X'Y, XY + X'Y'.

may be expanded in a series consisting of \//7Alothsbutelastwreueto
a sum of products, each product being of WNA Yj'..#' elements; the last two require four ele-
the form X1X2. . 27. with some per- MESH d di ments and are X7 @ Y and (X G )'
mutation of primes on the letters, and respectively. Thus the theorem is true
each product having the coefficient 0 or 1. Figure 15 (left). Planar network for illustra- for n = 2. Now assuming it true for
Now since each of the n variables may or nio -fdaiytermn1, we shall prove it true for n and
may not have a prime, there is a total of Figure 16 (right). Dual of figure 15 thus complete the induction. Any func-
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tion of n variables may be expanded requiring the most elements using any E
about the nth variable as follows: type of circuit has not as yet been deter- ||,

mined. S XI ut
f(Xi, X2. .. Xn) =f=Xnf(Xi.. Xn_-1, 1) + ined. 1S

Xn'f(XI. . . Xn-1, 0) (19) DUAL NETWORKS R T 2 IR' , Yt
Now the terms f(Xi . . . X_1, 1) and The negative of any network may be | w Q,O'f(Xi . . . X,,- 1, 0) are functions of n-I found by De Morgan's theorem, but the L,Q<0- Z J ZI zY3variables and if they individually require network must first be transformed into an Figure 21 (left). Simple constant-voltagethe most elements for n -1 variables, then equivalent series-parallel circuit (unless Simf will require the most elements for n it is already of this type). A theorem will system
variables, providing there is no other be developed with which the negative of Figure 22 (right). Constant-current system
method of writingf so that less elements any planar two-terminal circuit may be equivalent to figure 21
are required. We have assumed that found directly. As a corollary a method
the most elements for n - 1 variables are of finding a constant-current circuit path represents a path across M dividing
required by vXn and its negative. If we, the circuit from c to d along which every1 element of M is one. Hence XCd = 1.therefore, substitute forf(Xi ... Xn- 1, l) SE | Similarly, ifXC = 0, then X0b = 1,
the function 02 Xk and for f(X ... | y2 and it follows that Xab = Xcd.

1 n It is evident from this theorem that a

Xn-1, 0) the function we find: egative for any planar network may be
k /we find: Xn=realized with the same number of elements

n-1 n-1 1 as the given network. t
=Xn X + Xn,' Xk ) = ( X,k Figure 19 (left). General constant-voltage In a constant-voltage relay system all

1 \1 1 \ I relay circuit the relays are in parallel across the line.
From the symmetry of this function there Figure 20 (right). General constant-current To open a relay a series connection is
is no other way of expanding which will relay circuit opened. The general constant-voltage

system is shown in figure 19. In a con-
stant-current system the relays are all inT

R )7 equivalent to a given constant-voltage series in the line. To de-operate a relay
a U >6 ~S.-.-.--b circuit and vice versa will be given. it is short-circuited. The general con-

v \bz Let N represent a planar network of stant-current circuit corresponding to
° z hindrances, with the function Xab figure 19 is shown in figure 20. If the

Figure 18. Nonplanar network between the terminals a and b which are relay Ye of figure 20 is to be operated
on the outer edge of the network. For whenever the relay Xk of figure 19 is
definiteness consider the network of operated and not otherwise, then evi-

reduce the number of elements. If the figure 15 (here the hindrances are shown dently the hindrance in parallel with Ykf
functions are substituted in the other merely as lines). which short-circuits it must be the
order we get: Now let M represent the dual of N negative of the hindrance in series with

n-1 n-1 n as found by the following process; for Xk which connects it across the voltagef I X n-(¢ Xt%'+X,,' v Xt =Xk each contour or mesh of N assign a node source. If this is true for all the relays,
\1 J 1 1 or junction point of M. For each ele- we shall say that the constant-current

This completes the proof that these func- ment of N, say Xk, separating the con- and constant-voltage systems are equiva-
tions require the most elements. tours r and s there corresponds an ele- lent. The above theorem may be
To showthateach-requires (3.2n12) ment Xk' connecting the nodes r and s used to find equivalent circuits of this

elements, let the number of elements re- of M. The area exterior to N is to be sort, for if we make the networks N and
quired be denoted by s(n). Then from considered as two meshes, c and d, cor- M of figures 19 and 20 duals in the sense
(19) we get the difference equation: responding to nodes c and d of M. Thus described, with Xk and Yk as correspond-the dual of figure 15 is the network of ing elements, then the condition will be
s(n) = 2s(n - 1) + 2 figure 16. satisfied. A simple example of this is

Theorem: If M and N bear this du- shown in figures 21 and 22.with s(2) = 4. This iS linear, with con- ality relationship, then Xab = XCd'. To
sualcoefficients, and may be solved by prove this, let the network M be super-

the usual methods. The solution is: imposed upon N, the nodes of M within GENERAL SYMMETRIC FUNCTION
i(n) = 3 2 -2 2 the corresponding meshes of N and cor- It has been shown that any function

responding elements crossing. For the represents explicitly a series-parallel cir-as may easily be verified by substituting network of figure 15, this is shown in cuit. The series-parallel realization may
in the difference equation and boundary figure 17 with N solid and M dotted. require more elements, however, than
condition. Incidentally, the easiest method of find- some other network representing the same
Note that the above only applies to a ing the dual of a network (whether of this function. In this section a method will

series-parallel realization. In a later type or an impedance network) is to draw he given for finding a circuit representing
section it will be shown that the function the required network superimposed on a certain type of function which in general
Z AT and its negative may be realized the given network. Now, if Xab = 0, is much more economical of elements than1 ~~~~~~~~~~~thenthere must be some path from a to b t This is not in general true if the word "planar"with 4(n-1) elements using a more along the lines of N such that every ele- is omitted. The nonplanar network XabJ of
general tyeof circuit. The function ment on this path equals zero. But this figure 18, for example, has no negative containing
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the best series-parallel circuit. This type function XY + XZ + YZ has the a- 0, 1, 2, and 3 at the right. The terminal
of function is known as a symmetric numbers 2 and 3, since the function is b is connected to the levels corresponding
function and appears frequently in relay zero if just two of the variables are zero to the a-numbers of the required function,
circuits. or if three are zero, but not if none or if in this case to the level marked 2. The

Definition: A function of the n vari- one is zero. To find the a-numbers of a line coming in at first encounters a pair
ables Xi, X2 . . . X, is said to be sym- given symmetric function it is merely of hindrances X1 and X1'. If X1 = 0,
metric in these variables if any inter- necessary to evaluate the function with the line is switched up to the level marked

0, 1 . . . n of the variables zero. Those 1, meaning that one of the variables is

X
3 numbers for which the result is zero are zero; if not it stays at the same level.

X3? ~ the a-numbers of the function. Next we come to hindrances X2 and

x2 A x FTheorem: There are 2+1 symmetric X2'. If X2 = 0, the line is switched up a
2x 3 functions of n variables. This follows level; if not, it stays at the same level.

XI from the fact that there are n + 1 num- X3 has a similar effect. Finally reaching
a -'_O 4o3 . o-0-.O b bers, each of which may be taken or not the right-hand set of terminals, the line

XI X2 X3 in our selection of a-numbers. Two of has been switched up to a level equal to

Figure 23. Circuit for realizing S2(X1, X2, XS) the functions are trivial, however, namely, the total number variables which are
those in which all and none of the numbers zero. Since terminal b is connected to
are taken. These give the "functions" the level marked 2, the circuit a-b will

A2 0°x \ ° and 1, respectively. The symmetric be completed if and only if 2 of the vari-
x2.-O o x function of the n variables X1, X2 ... X,

XIoK,a x2z- \ with the a-numbers a,, a2. ak will be
aXi =° O1bwritten Sa1a2... ak(X,,X2...Xn). Thus

F;9UK4.Siplifcatiooffigre23 theexamplegivenwouldbeS2,3(X, Y, Z). o
The circuit which has been developed for _
realizing the general symmetric function a_

change of the variables leaves the func- is based on the a-numbers of the function 2 NUMBERS

tion identically the same. Thus XY~+ and we shall now assume that they are
I

XZ + YZ is symmetric in the variables known. xi x) X3 * Xn
X, Y, and Z. Since any permutation of Theorem: The sum of two given sym- Figure 25. Circuit for realizing the general
variables may be obtained by successive metrc functions of the same. set of vane- symmetric function Sala2 ak(Xli X2 aXn)
interchanges of two variables, a neces-
sary and sufficient condition that a func- variables having for a-numbers those Each sloping element has the hindrance of
tion be symmetric is that any interchange numbers common to the two given func- the variable written below it; each hori-

o-tios. Thus S1,2,3 (X1 . .X6) + S2,3,i zontal element has the negdtive of this hin-of two variables leaves the function un- Ll°nS. 111US J1,2,3 t ) drance. This convention will be used on most
altered. (XI... XB) = S2,3 (XI ... X6).
By proper selection of the variables Theorem: The product of two given

many apparently unsymmetric functions symmetric functions of the same set
may be made symmetric. For example, of variables is a symmetric function of ables are zero. If S0,3 (XI, X2, X3)
XY'Z + X'YZ + X'Y'Z' although not these variables with all the numbers ap- had been desired, terminal b would be
symmetric in X, Y, and Z is symmetric in pearing in either or both of the given func- connected to both levels 0 and 3. In
X, Y, and Z'. It is also sometimes pos- tions for a-numbers. Thus S1,2,3 (XI ... figure 23 certain of the elements are evi-
sible to write an unsymmetric funlction X6) * S2,3,1 (Xi, * * X6) = Sl,2,3,5 (Xi ... dently superfluous. The circuit may be
as a symmetric function multiplied by a X6). To prove these theorems, note simplified to the form of figure 24.
simple term or added to a simple term. that a product is zero if either factor is For the general function exactly the
In such a case the symmetric part may be zero, while a sum is zero only if both terms same method is followed. Using the
realized with the methods to be de- are zero. general circuit for n variables of figure 25,
scribed, and the additional term supplied Theorem: The negative of a symmetric the terminal b is connected to the levels
as a series or parallel connection. function of n variables is a symmetric corresponding to the a-numbers of the
The following theorem forms the basis function of these variables having for a- desired symmetric function. In figure 25

of the method of design which has been numbers all the numbers from 0 to n, the hindrances are represented merely by
developed. inclusive, which are not in the a-numbers lines, and the letters are omitted from the

Theorem: A necessary and sufficient of the given function. Thus S'2,3,s(Xl circuit, but the hindrance of each line
condition that a function be symmetric is X6) = SO,1,4,6 (X1 ... X6). may easily be seen by generalizing figure
that it may be specified by stating a set Before considering the synthesis of the 23. After terminal b is connected, all
of numbers al, a2 . . . ak such that if ex- general symmetric function Sslaa . . ak superfluous elements may be deleted.
actly a} ( = 1, 2, 3. . k) of the variables (X1, X2. . . Xi) a simple example will be In certain cases it is possible to greatly
are zero, then the function is zero and not given. Suppose the function 82(X1, X2, simplify the circuit by shifting the levels
otherwise. This follows easily from the X3) iS to be realized. This means that down. Suppose the function 80,3,6 (X1
definition. The set of numbers a1, we must construct a circuit which will be . . . X6) is desired. Instead of continuing
a2 . a1 may be any set of numbers closed when any two of the variables the circuit up to the sixth level, we con-
selected from the numbers 0 to n, in- Xl, X2, X3 are zero, but open if none, or nect the second level back down to the
clusive, where nis the number of variables one or three are zero. A circuit for this zero level as shown in figure 26. The
in the symmetric function. For con- purpose is shown in figure 23. This cir- zero level then also becomes the third
venience, they will be called the a- cuit may be divided into three bays, one level and the sixth level. With terminal
numbers of the function. The symmetric for each variable, and four levels marked b connected to this level, we have realized
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the function with a great saving of ele- Table II. Relation of Operating Characteristics and Equations
ments. Eliminating unnecessary ele-
ments the circuit of figure 27 is obtained. Symbol In Terms of Operation In Terms of Nonoperation
This device is especially useful if the a-
numbers form an arithmetic progression, x.The switch or relay X is operated. The switch or relay X is not operated

although it can sometimes be applied in X .The switch or relay X is not operated. The switch or relay X is operated

other cases. or... Or And
+. .~~~~~And. Or

(n \ t (- -)'...... Thecircuit(--)isnotclosed,orapply... The circuit (- -) is closed, or apply
The functions :Xk and 4 Xk which De Morgan's theorem De Morgan's theorem

I 1 X (t - p) . . X has been operated for at least p seconds ... X has been open for at least p seconds
were shown to require the most elements If the dependent variable appears in its own defining function (as in a lock-in circuit) strict adherence to
for a series parallel realization have very the above leads to confusing sentences. In such cases the following equivalents should be used.

simple circuits when developed in this X = RX + S........X is operated when R is closed (pro-
viding S is closed) and remains so

manner. It can be easily shown that if independent of R until S opens
a X = (R' + X)S'. X is opened when R is closed (pro-

n is even, then ZXk is the symmetrc vidiag S is closed) and remains so
1 independent of R until S opens

function with all the even numbers for In using this table it is usually best to write the function under consideration either as a sum of pure products
a-numbers, if n is odd it has all the odd or as a product of pure sums. In the case of a sum of products the characteristics should be defined in

functin. terms of nonoperation; for a product of sums in terms of operation. If this is not done it is difficult to
numbers for a-numbers. The function give implicit and explicit parentheses the proper significance.

ZXk }is, of course, just the opposite.
1

t s 0 or n missing will produce one unneces- which may be necessary will usually beUsing the shiftong-down process thecar- sary element. However, if two of the a- obvious from the nature of the problem.

These circuits each require 4(n-1) ele- numbers differ by only one, then two ele- 2. The hindrance equations for each ofThee crcuts achreqire4(n 1) le-
mens wll e sperluos. f mre han the dependent variables should now be

ments. They will be recognized as the ments will be superfluous If more than written down. These functions may in-
familiar circuit for controlling a light two of the a-numbers are adjacent, or if volve any of the variables, dependent or

two or more adjacent numbers are miss- independent, including the variable whose

ing, then more than one element apiece function is being determined (as, for
gS /£ o<\ / N 72 s will be superfluous. It is evident then example, in a lock-in circuit). The condi-

/~~ ~~~~~~~ta the wos cas wil betati
tiOtlS may be either conditions for operation

f 2 \ t?1.4 that the worst case will be that in or for nonoperation. Equations are written
a

0,3,6 b which the a-numbers are all the odd num- from operating characteristics according to
axi X2 X3 X4 X5 X6, bers or all the even numbers from 0 to table II. To illustrate the use of this table

Figure 26 *Circuit for S5,5,5(X5 . . . Xn. In each of these cases it is easily suppose a relay U is to operate if x is oper-
Figure 26. Circuit for S36 (xI... X6) using ated and y or z is operated and v or w or z

the "shifting down" process seen that n of the elements will be super- is not operated. The expression for A
fluous. In these cases the shifting down will be:
process may be used if n > 2 so that the
/maximum of n2 elements will be needed U = x + yz + v'w'z'
only for the four particular functions
X, X', X@Y, and (XQ3Y)'. Lock-in relay equations have already been

Xil- X2 X3 X4 Xs x6 rc,discussed. It does not, of course, matter
if the same conditions are put in the expres-

Figure 27. Simplification of figure 26 EQUATIONS FROM GIVEN sion more than once all superfluous mate-
OPERATING CHARACTERISTICS rial will disappear in the final simplification

from n points, using (n-2) double-pole In general, there is a certain set of in- 3. The expressions for the various de-
double-throw switches and two single- dependent variables A, B, C . . . which pendent variables should next be simplified
pole-double-throw switches. If at any may be switches, externally operated or
one of the points the position of the switch protective relays. There is also a set
is changed, the total number of variables of dependent variables x, y, z . .. which b
which equal zero is changed by one, so represent relays, motors or other devices a
that if the light is on, it will be turned off to be controlled by the circuit. It is X, X2 X3 Xn- XXn
and if already off, it will be turned on. required to find a network which gives, n a
More than one symmetric function of for each possible combination of values of Figure 28. ZXk for n odd, (XkY)' for n

a certain set of variables may be realized the independent variables, the correct even
with just one circuit of the form of values for all the dependent variables.
figure 25, providing the different func- The following principles give the general
tions have no a-numbers in common. If method of solution.
there are common a-numbers the levels a b2.X
may be shifted down, or an extra relay 1. Additional dependent variables must be
may be added so that one circuit is still introduced for each added phase of opera- .f

sufficient. ~~~~~tionof sequential system. Thus if it is Figure 29. (ZXe) for n evens (EXe)' for nsufficient. ~~desired to construct a system which operates odd
The general network of figure 25 con- in the stps tw diinlvralsms

tains n(n+1) elements. We will show be introduced to represent the beginning of
that for any given selection of a-numbers, the last two steps. These additional vani- as much as possible by means of the theo-
at least n of the elements will be super- ables may represent contacts on a stepping reins on manipulation of these quantities.

fluous. Ech numberfrom 1 ton- 1, in- switch or relays which lock in sequentially. Just how much this can be done dependsfluos.Echnmberfrom1 ton-1,ln- Similarly each required time delay will re- somewhat on the ingenuity of the designer.
clusive, which is not in the set of a-num- quire a new variable, representing a time de- 4. The resulting circuit should now be
bers produces two unnecessary elements; layrelay of some sort. Other forms of relays drawn. Any necessary additions dictated
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+ w WI -- symmetric-function method, we may lock the buttons must be pressed in the
write for U: following order: c, b, a, and c simul-

,,x xo- c0 Cx x taneously, d. When operated in this
~~~~~~~~~~~U 0

= Sl,34(W, X,Y, Z) I

Y Y' yV y S' Y' ' sequence the lock is to unlock, but if any
v o T 0T This circuit (figure 31) contains only 15 button is pressed incorrectly an alarm

KzolozoezuZ! oz o.l.ozb z elements. A still further reduction may U is to operate. To relock the system a
be made with the following device. First switch g must be operated. To release

Fslertive cireaizawrite: the alarm once it has started a switch h

U' = SO 2(W, x, y, z) must be operated. This being a sequen-
tial system either a stepping switch or

This has the circuit of figure 32. What additional sequential relays are required.
is required is the negative of this function. Using sequential relays let them be de-

A 0 This is a planar network and we may ap- noted by w, x, y and z corresponding, re-

,A74 7-o spectively, to the correct sequence of

+° o-4 c>-4 o.-/operating the push buttons. An addi-
+-4~o-w xoy zc-Z-/ °.o tional time-delay relay is also required

v 74 |;~ due to the third step in the operation.
Figure 31. Selective circuit from symmetric- u' Obviously, even in correct operation a

function method +-4 .w4 _x g z and c cannot be pressed at exactly the
w x y z

same time, but if only one is pressed and
Figure 32. Negative of selective circuit from held down the alarm should operate.

by practical considerations such as current- symmetric-function method Therefore assume an auxiliary time delay
carrying ability, sequence of contact opera- z, relay v which will operate if either a or c
tion, etc., should be made. alone is pressed at the end of step 2 and

zV l Exam yz . held down longer than time s the delay of
V. Illustrative Examples 00 Yy y 9

+_x '/ V>oX u the relay.
In ths s n s l p m wWhen z has operated the lock unlocks

be thissolved nw temethodswhc hael WIX x w and at this point let all the other relays

been developed. Themexampls arch in- drop out of the circuit. The equationsbeen developed. The examples are in- oftesse a ewitndw m

tended more to illustrate the use of the ofitesys
calculus in actual problems and to show Figure 33. Dual of figure 32 mediately:
the versatility of relay and switching w = cw + z' + U'
circuits than to describe practical de- x = bx + w + z' + U'
vices. ply the theorem on the dual of a net- =( +b)x± + + z' + U'

It is possible to perform complex work, thus obtaning the circuit shown in ( d + ) + g' + U'
mathematical operations by means of figure 33. This contains 14 elements and x c + '' + z' + U'
relay circuits. Numbers may be rep- is probably the most economical circuit U = e(w' + abd)(w + x' + ad)
resented by the positions of relays or of any sort. [x + y' + dv(t -s)
stepping switches, and interconnections DESIGN OF AN [Y+bV(-s)]U + h' + z'

between sets of relays can be made to
DSG FA

betwesenstsvariofurs cantbemcadtop ELECTRIC COMBINATION LOCK These expressions can be simplified con-
represent vanlous mathematical opera-
tions. In fact, any operation that can An electric lock is to be constructed siderably, first by combining the second
be completely described in a finite num- with the following characteristics. There and third factors in the first term of U,
ber of steps using the words "if," "or," are to be five pushbutton switches avail-
"and," etc. (see table II), can be done able onl the front of the lock. These will
automatically with relays. The last be labeled a, b, c, d, e. To operate the Figure 34. Combination-lock circuif
example is an illustration of a mathemati-
cal operation accomplished with relays. + u0 u

A SELECTIVE CIRCUIT ,b
A relay U is to operate when any one, L V

any three or when all four of the relays V 3-o Y o- x

w, x, y, and z are operated but not when v a

none or two are operated. The hin- x 0 ' d ,
derance function for U will evidently be: cl h '°w, w

U = wxyz + w'x'yz + w'xy'z + w'xyz' + lI w3
l 't''i wx'y'z + wx'yz' + wxy'z'll1WE ,

Reducing to the simplest series-parallel vU',c
form:lx Yt

Ur=.w[x(yz+ y'z') + x'(y'z + yz')] + _g a t '._
1 *;< - :tw'[x(y'z + yz') + x'yzl 'sY°odcOc(

T(1hiscoirctiit is shown in figure 30. It re- o , v
qirs2O elemen:ts.- However, using the z AND Z' MAKE BEFORE BREAK U AND U MAKE BEFORE BREAK
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and then by factoring out the common ,I rI
terms of the several functions. The LOW-v oitage riuorescent Lamps
final simplified form is as below:

U = h' +e[ad(b+w')+x'] By G. E. INMAN R. N. THAYER
(x + y' + dv) (y + vb) U NONMEMBER AIEE NONMEMBER AIEE

W = cw
x = Z' + bx + w
y = u' + (a + c)y Introduction centrated on the electrical characteristics

iIx+~ of the lamps, and on the design of efficientv =I ac+ac UORESCENT lamps have been ballast equipment. The lamps described
z = g' + (y + d)z + U developed, simple in design, and are in one of several classes which are
This corresponds to the circuit of figure operating through suitable ballast from under development. In some respects
34. 115- and 230-volt a-c circuits. They are they are experimental and may be

tubular in form, and the fluorescent ma- changed before being commercialized.
ELECTRIC ADDER TO THE BASE Two terial is energized by a hot-cathode posi-
A circuit is to be designed that will tive-column electric discharge. Just as a Lamp Description

automatically add two numbers, using transformer converts one voltage to an-
only relays and switches. Although any other, the fluorescent powder adhering To obtain the positive-column type of
numbering base could be used the circuit to the inner wall of the bulb converts the discharge, found most efficient for this
is greatly simplified by using the scale of invisible ultraviolet radiation present in a lamp, the tube length should be at least
two. Each digit is thus either 0 or 1 low-pressure mercury discharge into vis- several times its diameter. One elec-
the number whose digits in order are ible radiation, or light. Recent progress trode is sealed in at each end of the tube,akt,ah 1, ak2, . a2, al, a has the value in the development of these lamps has re- and serves alternately as cathode andsulted from the gradual increase in knowl- anode. The electrodes are small coils of
Zak2i edge pertaining to hot cathodes, to the tungsten wire (see figure 1) coated with
.=0 production of short-wave ultraviolet, and emission material, such as barium and

to the manufacture of efficient fluores- strontium carbonates, which in manu-Let the two numbers which are to be cent powders. These advances have been facture are broken down into oxides. The
added be represented by a series of applied in a lamp to produce colored light tungsten wire is small enough not only to
switches; ak, a , . . as, a0 representing many times more efficiently than do pres- be heated sufficiently by the energy of the
the various digits of one of the numbers ent light sources. In addition, fluores- discharge to provide good emission, but
and bk, b/c..1, b1, bo the digits of the cence makes possible for the first time an also to heat up quickly when the lamp is
other number. The sum will be rep- efficient, practicable, low-wattage white started. In general, only one or two
resented by the positions of a set of relays light matching daylight in appearance. turns of the tungsten coils are heated to
SK+1, Sk, Sk- 1 ... SI, So. A number which Much of the development has been con- incandescence by the discharge, but the
is carried to the jth column from the is carried to the ith column from the

hot spots shift from one section to another(j- 1)th column will be represented by a Paper number 38-93, recommended by the AIEE during the life of the lamp.
relay cj. If the value of any digit is committee on production and application of lightI . and presented at the AIEE summer convention, The inner wall of the tube is coated withzero, the corresponding relay or switch Washington, D. C., June 20-24, 1938. Manuscript er of fluorescent material (also
will be taken to be in the position of zero submitted April 8, 1938; made available for pre- a th e posphor). Inside catn,
hindrance; if one, in the position where printing May 27, 1938. called the phosphor). Inside coating,

te h c .- G. E. INMAN and R. N. THAYER are employed in in addition to its usual advantages, is es-the hindrance is one. The actual addi- the lamp development laboratory of the Nela sential in this case because the ultraviolet
tion is shown below: Park works of the General Electric Company,

Cleveland, Ohio. radiation which energizes the phosphor
C/+ 1 Ck Cj+1CJ C2C1 Carried numbers

ak---aj+ laj ---a2a1ao First number
bk b,+ 1b, b2bibo Second number

Ck+ I Sk---Sj+ 1Sj---S2SLSs Sum
or Starting from the right, sO is one if a0 Using the method of symmetric functions,Sk/+l is one and bo is zero or if a0 is zero and and shifting down for sj gives the circuits

bo one but not otherwise. of figure 35. Eliminating superfluous
j=1,2; K c j=° Hence: elements we arrive at figure 36.

ElI so = aobo' + aobo'b= ao ED bo
+~ ~ Iz JReferences+

SO Ci is one if both aO and bo are one but not
[ bo otherwise. 1. A complete bibliography of the literature ofbj cj symbolic logic is given in the Journal of Symbolic

Fisure 35.Circutsforelectric dder cl = aO-baLogic, volume 1, number 4, December 1936.Figure 35. Circuitsforlectric adder cs = ao b0Those elementary parts of the theory that are
useful in connection with relay circuits are well

ss is one if just one of aj, b1, c, is one, or if treated in the two following references.
c; +t all three are one. ~~2. THE ALGEBRA OF? LOGIC, Loui8 Cauturat.j= l,2,3, al threaeo. The Open Court Publishing Company.

J' C/; S Sj = S1,a(a1, b, C>) J = 1, 2, . . . k 3. UNIVERSAL ALGEBRA, A. N. Whitehead.,,, , _ ~~~~~~~~~~~~~~~~~~Cambridge, at the University Press, volume I.a, > | c c>+, is one if two or if three of these hook III chaptersIand II,pages 35-82.
a' b. variables are one ~~~~~~~~~~~~~4.E. V. Huntington, Transaci ions of the AmericanJ. vaibe ar *oe Mathematical Society, volume 35, 1933, pages

274-304. The postulates referred to are the fourthFigure 36. Simplification of figure 35 cfrs = S2,s(aj, byj, Cj) j1 = 1, 2, . . k set, given on page 280.
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