T1. Review HW06 problems and solve any problems that students point out they had difficulty with.

- T2. Answer any general questions about HW07 and Lab 06.
- T3. Solve the following problems.
 - 1. Suppose you want to uniquely represent 24 objects using a binary number. What is the minimum number of bits that you need? What if you have n objects?
 - 2. Perform the following conversions:
 - a. $(1010101)_2$ to decimal
 - b. $(139)_{10}$ to binary
 - c. (0101101110)₂ to hexadecimal
 - d. $(ABC)_{16}$ to binary
 - e. (FE45)₁₆ to octal
 - f. $(1234)_5$ to base 6 representation
 - g. -25 in decimal to 6-bit sign-and-magnitude
 - h. -25 in decimal to 6-bit 1's complement
 - i. -25 in decimal to 6-bit 2's complement
 - j. (10110)₂ in 5-bit sign-and-magnitude to 5-bit 1's complement
 - k. (10110)₂ in 5-bit sign-and-magnitude to 5-bit 2's complement
 - I. (11101)₂ in 5-bit 1's complement to 5-bit sign-and-magnitude
 - m. (11101)₂ in 5-bit 1's complement to 5-bit 2's complement
 - n. (101110)₂ in 6-bit 2's complement to 6-bit sign-and-magnitude
 - o. $(101110)_2$ in 6-bit 2's complement to 6-bit 1's complement
 - 3. Negate the following 6-bit 2's complement binary numbers:
 - a. 001010
 - b. 110011
 - 4. What should the base b be such that x=3 is a root of the equation $6_b x^2 55_b x + 105_b = 0$?
 - 5. Represent the decimal number 13.1875 in IEEE 754 single-precision floating-point format.

 - 7. Convert the following IEEE 754 single-precision floating-point number to decimal. 10111101 01010000 00000000 00000000
 - 8. Convert BEC00000₁₆ (a 32-bit floating-point number in IEEE 754 format) to decimal.