Recitation \#9 Solutions

1. The circuit is given below:

2. (a) 3-bit up synchronous up-counter with enable:

All clear and preset signals should be set to 1 , i.e., $\mathrm{C} 2=\mathrm{C} 1=\mathrm{C} 0=\mathrm{P} 2=\mathrm{P} 1=\mathrm{P} 0=1$.
(b) Clear and preset signals should be set as follows:

q2	q1	q0	C2	C1	C0	P2	P1	P0
0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1
1	0	1	0	0	0	1	1	1
1	1	0	d	d	d	d	d	d
1	1	1	d	d	d	d	d	d

(c) Clear and preset signals should be set as follows:

q2	q1	q0	C2	C1	C0	P2	P1	P0
0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1
0	1	1	1	0	1	0	1	0
1	0	0	d	d	d	d	d	d
1	0	1	0	0	0	1	1	1
1	1	0	d	d	d	d	d	d
1	1	1	d	d	d	d	d	d

$$
\begin{aligned}
& \mathrm{C} 2=\mathrm{C} 0=\mathrm{q} 2^{\prime}, \mathrm{C} 1=\mathrm{q} 2^{\prime}\left(\mathrm{q} 1^{\prime}+\mathrm{q} 0^{\prime}\right) \\
& \mathrm{P} 2=\mathrm{P} 0=\left(\mathrm{q} 1^{\prime}+\mathrm{q} 0^{\prime}\right), \mathrm{P} 1=1
\end{aligned}
$$

3. (a) Clear and preset signals should be set as follows:

q 2	q 1	q 0	C 2	C 1	C 0	P 2	P 1	P 0
0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1
1	1	0	0	0	0	1	1	1
1	1	1	d	d	d	d	d	d

(b) Ideally, all flip-flops will be forced to 0 at the same time when $\mathrm{q} 2=1$, $\mathrm{q} 1=1$ and $\mathrm{q} 0=0$ (or 1). However, if the flip-flops switch at different speeds, one of q2 and q1 may be changed to 0 while the other may still be 1 . Then the C signals may be changed to 1 before all flip-flops are cleared.
4. The idea of a 4-bit ring counter is described in Ch. 5.11.2 and Fig. 5.28 in textbook. The following modification is needed to make it a 6-bit ring counter. First, the 3-bit counter should be converted to a modulo-6 counter by clearing it after 101 is detected. Second, only Q0, Q1, ..., Q5 of the 3-to-8 decoder are treated as outputs of the 6-bit ring counter. Q6 and Q7 are ignored.

