Recitation #10 Solutions 1. a. State diagram:

b. State assignment:

State	q1	q0
S000	0	0
S011	0	1
S110	1	0

State table:

R	q 1	q0	Q1	Q0
0	0	0	0	1
0	0	1	1	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	d	d

Output table:

q1	q0	D2	D1	D0
0	0	0	0	0
0	1	0	1	1
1	0	1	1	0
1	1	d	d	d

- c. Q1 = R'.q0Q0 = R'.q1'.q0D2 = q1
 - D1 = q1 + q0
 - D0 = q0

Sequence circuit:

2. We design a Moore machine with 4 states:

S – Before the lock enters a state in which both S_1 and S_2 are open.

- $S00 Both S_1$ and S_2 are open.
- $S10 S_1$ is closed while S_2 is open.
- $S11 Both S_1$ and S_2 are closed.

State diagram (the label on each transition is " S_1S_2 "):

Assume the following state assignment: $S \rightarrow 01$, $S00 \rightarrow 00$, $S10 \rightarrow 10$, $S11 \rightarrow 11$. State table:

q1	q0	S_1	S_2	Q1	Q0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	0	1
			~ .	•	

$$Q1 = q1.q0'.S_1 + q0'.S_1.S_2'$$

 $Q0 = S_2 + q0.S_1$

Output table:

q1	q0	Ζ
0	0	0
0	1	0
1	0	0
1	1	1

Z = q1.q0

3. Nine states are required. Each state is named SXY such that X is the remainder when number of 0's is divided by 3 and Y is the remainder when number of 1's is divided by 3. The state diagram:

4. We design a Moore machine with 4 states. The output will be the same as the state. The state table is as follows:

S	Q1	Q0	q1	q0	J1	K1	JO	K0
0	0	0	0	1	0	d	1	d
0	0	1	1	0	1	d	d	1
0	1	0	1	1	d	0	1	d
0	1	1	0	0	d	1	d	1
1	0	0	1	1	1	d	1	d
1	0	1	0	0	0	d	d	1
1	1	0	0	1	d	1	1	d
1	1	1	1	0	d	0	d	1

J1=K1=S⊕Q0, J0=K0=1

