Recitation \#10 Solutions

1. a. State diagram:

b. State assignment:

State	q1	q0
S000	0	0
S011	0	1
S110	1	0

State table:

R	q 1	q 0	Q 1	Q 0
0	0	0	0	1
0	0	1	1	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	d	d

Output table:

q 1	q 0	D 2	D 1	D 0
0	0	0	0	0
0	1	0	1	1
1	0	1	1	0
1	1	d	d	d

c. $\mathrm{Q} 1=\mathrm{R}^{\prime} . \mathrm{q} 0$

Q0 = R'.q1'.q0
$\mathrm{D} 2=\mathrm{q} 1$
D1 $=\mathrm{q} 1+\mathrm{q} 0$
D0 = q0
Sequence circuit:

2. We design a Moore machine with 4 states:

S - Before the lock enters a state in which both S_{1} and S_{2} are open.
S00 - Both S_{1} and S_{2} are open.
$\mathrm{S} 10-\mathrm{S}_{1}$ is closed while S_{2} is open.
S11 - Both S_{1} and S_{2} are closed.
State diagram (the label on each transition is " $\mathrm{S}_{1} \mathrm{~S}_{2}$ "):

Assume the following state assignment: $\mathrm{S} \rightarrow 01, \mathrm{~S} 00 \rightarrow 00, \mathrm{~S} 10 \rightarrow 10$, S11 $\rightarrow 11$.
State table:

q 1	q 0	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	Q 1	Q 0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	0	1

Output table:

q 1	q 0	Z
0	0	0
0	1	0
1	0	0
1	1	1

3. Nine states are required. Each state is named SXY such that X is the remainder when number of 0 's is divided by 3 and Y is the remainder when number of 1 's is divided by 3 . The state diagram:

4. We design a Moore machine with 4 states. The output will be the same as the state. The state table is as follows:

S	Q1	Q0	q1	q0	J1	K1	J0	K0
0	0	0	0	1	0	d	1	d
0	0	1	1	0	1	d	d	1
0	1	0	1	1	d	0	1	d
0	1	1	0	0	d	1	d	1
1	0	0	1	1	1	d	1	d
1	0	1	0	0	0	d	d	1
1	1	0	0	1	d	1	1	d
1	1	1	1	0	d	0	d	1

J1=K1 $=\mathrm{S} \oplus \mathrm{Q} 0, \mathrm{~J} 0=\mathrm{K} 0=1$

