


# CprE 281: Digital Logic

#### Instructor: Alexander Stoytchev

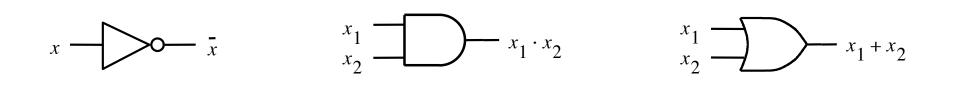
#### http://www.ece.iastate.edu/~alexs/classes/

# Synthesis Using AND, OR, and NOT Gates

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

#### **Administrative Stuff**

• HW2 is due on Wednesday Sep 9 @ 4pm


- Please write clearly on the first page (in block capital letters) the following three things:
  - Your First and Last Name
  - Your Student ID Number
  - Your Lab Section Letter

## **Administrative Stuff**

- Next week we will start with Lab2
- It will be graded!
- Print the answer sheet for that lab and do the prelab at home. Otherwise you'll lose 20% of your grade for that lab.

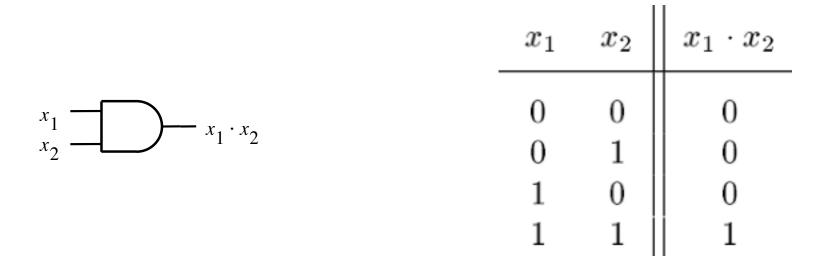
#### **Quick Review**

#### The Three Basic Logic Gates

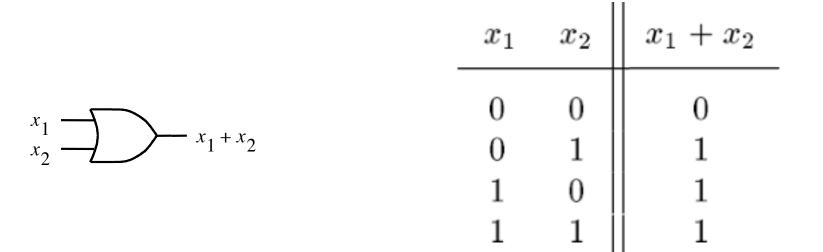


NOT gate

AND gate


OR gate

[Figure 2.8 from the textbook]


#### **Truth Table for NOT**



#### **Truth Table for AND**



#### **Truth Table for OR**



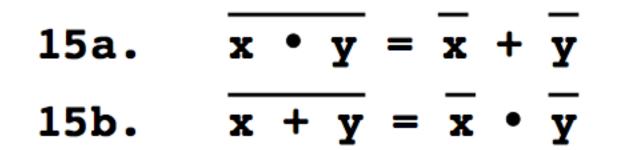
#### **Truth Tables for AND and OR**

| $x_1$ | $x_2$                                 | $x_1 \cdot x_2$ | $x_1 + x_2$ |
|-------|---------------------------------------|-----------------|-------------|
| 0     | 0                                     | 0               | 0           |
| 0     | $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ |                 | 1           |
| 1     | $1 \mid$                              | 1               | 1           |
|       | 1                                     |                 | <b></b>     |

AND OR

[ Figure 2.6b from the textbook ]

#### **Operator Precedence**


- In regular arithmetic and algebra multiplication
  takes precedence over addition
- This is also true in Boolean algebra

# **Operator Precedence** (three different ways to write the same)

# $x_1 \cdot x_2 + \overline{x}_1 \cdot \overline{x}_2$ $(x_1 \cdot x_2) + ((\overline{x}_1) \cdot (\overline{x}_2))$

 $x_1x_2 + \overline{x}_1\overline{x}_2$ 

#### **DeMorgan's Theorem**



# **Function Synthesis**

#### **Synthesize the Following Function**

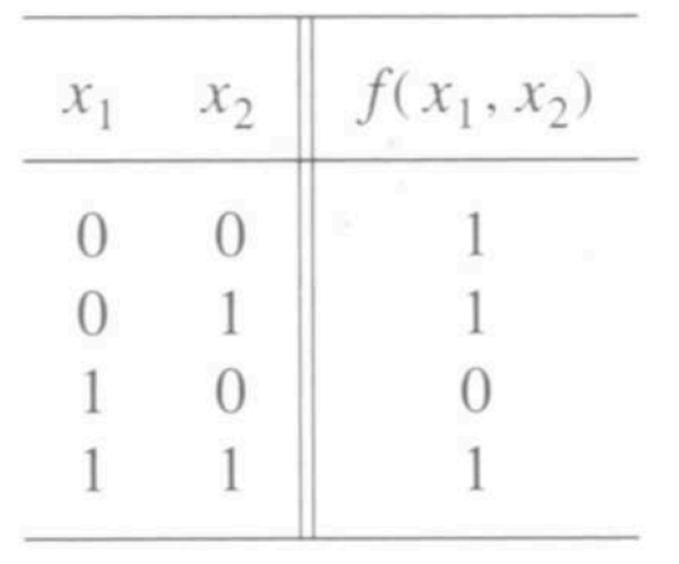
| <b>x</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | f(x <sub>1</sub> ,x <sub>2</sub> ) |
|-----------------------|-----------------------|------------------------------------|
| 0                     | 0                     | 1                                  |
| 0                     | 1                     | 1                                  |
| 1                     | 0                     | 0                                  |
| 1                     | 1                     | 1                                  |

# 1) Split the function into 4 functions

| <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | f <sub>00</sub> (x <sub>1</sub> ,x <sub>2</sub> ) | f <sub>01</sub> (x <sub>1</sub> ,x <sub>2</sub> ) | f <sub>10</sub> (x <sub>1</sub> ,x <sub>2</sub> ) | f <sub>11</sub> (x <sub>1</sub> ,x <sub>2</sub> ) |
|-----------------------|-----------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0                     | 0                     | 1                                                 | 0                                                 | 0                                                 | 0                                                 |
| 0                     | 1                     | 0                                                 | 1                                                 | 0                                                 | 0                                                 |
| 1                     | 0                     | 0                                                 | 0                                                 | 0                                                 | 0                                                 |
| 1                     | 1                     | 0                                                 | 0                                                 | 0                                                 | 1                                                 |

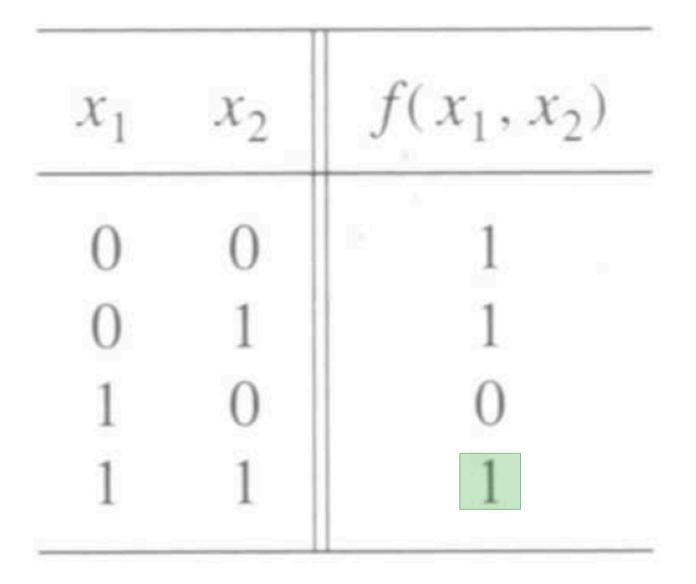
# 2) Write Expressions for all four

| <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | f <sub>00</sub> (x <sub>1</sub> ,x <sub>2</sub> ) | f <sub>01</sub> (x <sub>1</sub> ,x <sub>2</sub> ) | f <sub>10</sub> (x <sub>1</sub> ,x <sub>2</sub> ) | f <sub>11</sub> (x <sub>1</sub> ,x <sub>2</sub> ) |
|-----------------------|-----------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0                     | 0                     | 1                                                 | 0                                                 | 0                                                 | 0                                                 |
| 0                     | 1                     | 0                                                 | 1                                                 | 0                                                 | 0                                                 |
| 1                     | 0                     | 0                                                 | 0                                                 | 0                                                 | 0                                                 |
| 1                     | 1                     | 0                                                 | 0                                                 | 0                                                 | 1                                                 |
| L                     | 1                     | L                                                 |                                                   | 1                                                 | L                                                 |

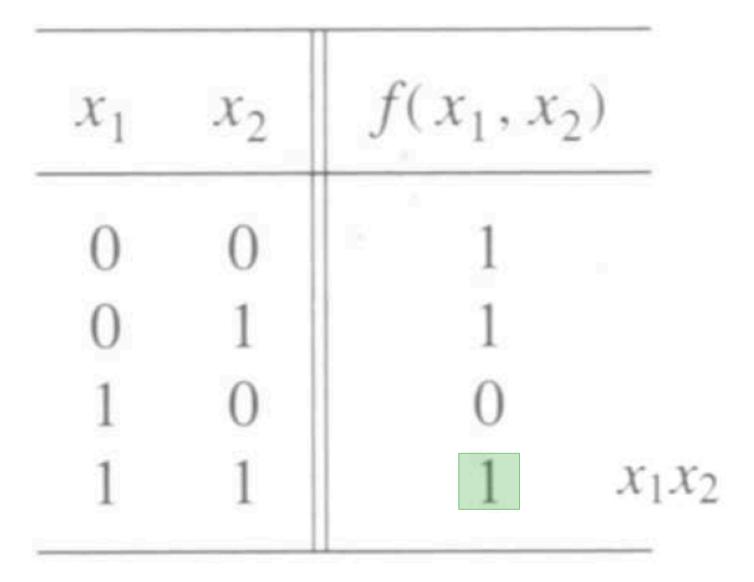

 $x_1 x_2 \quad \overline{x}_1 x_2 \quad 0 \quad \overline{x}_1 \overline{x}_2$ 

# 3) Then just add them together

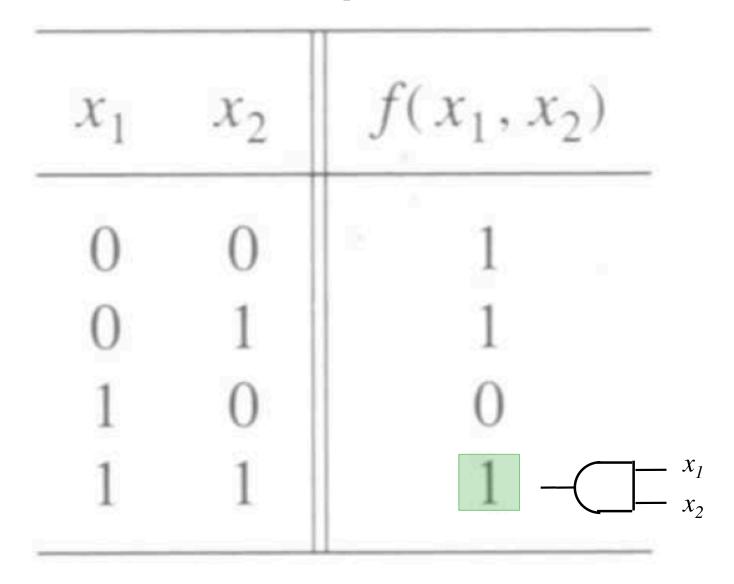
| <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | f <sub>00</sub> (x <sub>1</sub> ,x <sub>2</sub> ) | f <sub>01</sub> (x <sub>1</sub> ,x <sub>2</sub> ) | f <sub>10</sub> (x <sub>1</sub> ,x <sub>2</sub> ) | f <sub>11</sub> (x <sub>1</sub> ,x <sub>2</sub> ) |
|-----------------------|-----------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0                     | 0                     | 1                                                 | 0                                                 | 0                                                 | 0                                                 |
| 0                     | 1                     | 0                                                 | 1                                                 | 0                                                 | 0                                                 |
| 1                     | 0                     | 0                                                 | 0                                                 | 0                                                 | 0                                                 |
| 1                     | 1                     | 0                                                 | 0                                                 | 0                                                 | 1                                                 |


 $f(x_1, x_2) = x_1 x_2 + \overline{x}_1 x_2 + 0 + \overline{x}_1 \overline{x}_2$ 

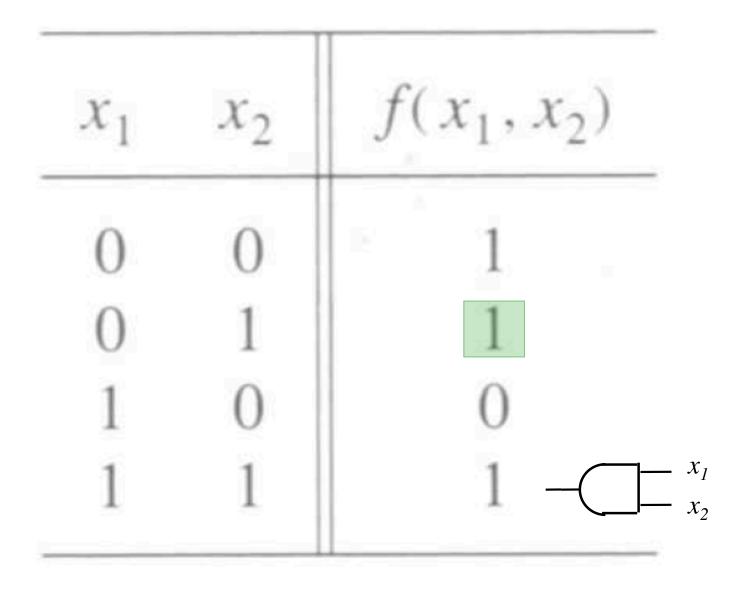
#### A function to be synthesized



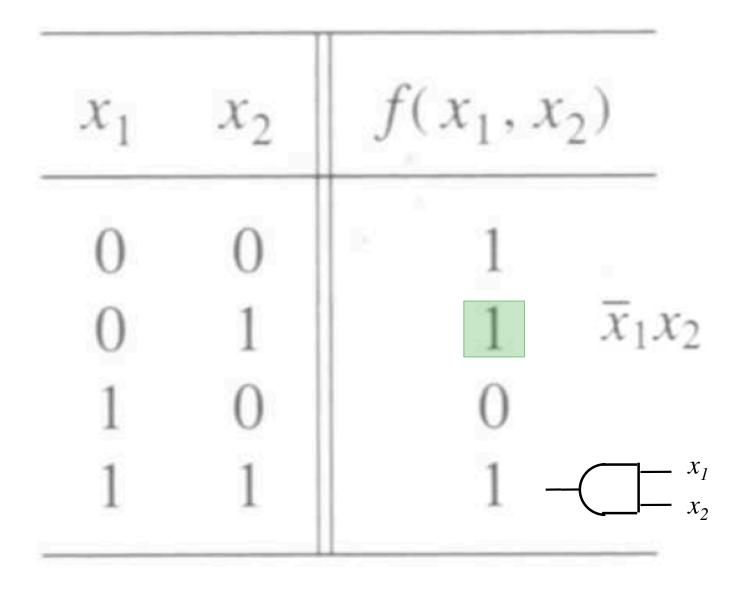

[Figure 2.19 from the textbook]


# Let's look at it row by row. How can we express the last row?

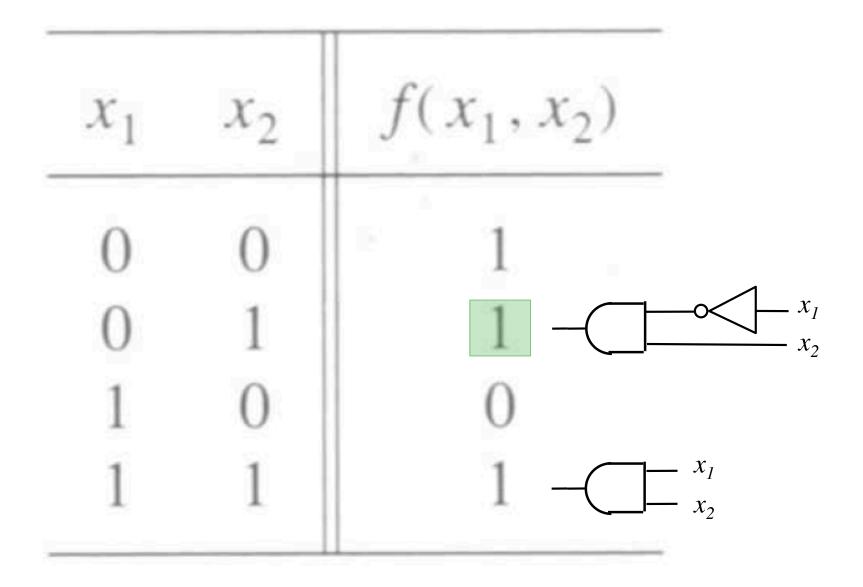



# Let's look at it row by row. How can we express the last row?

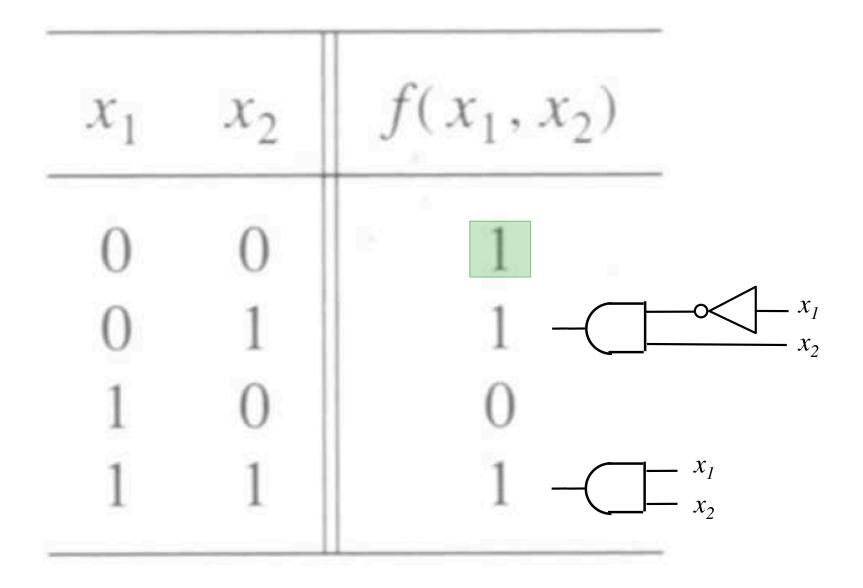



# Let's look at it row by row. How can we express the last row?

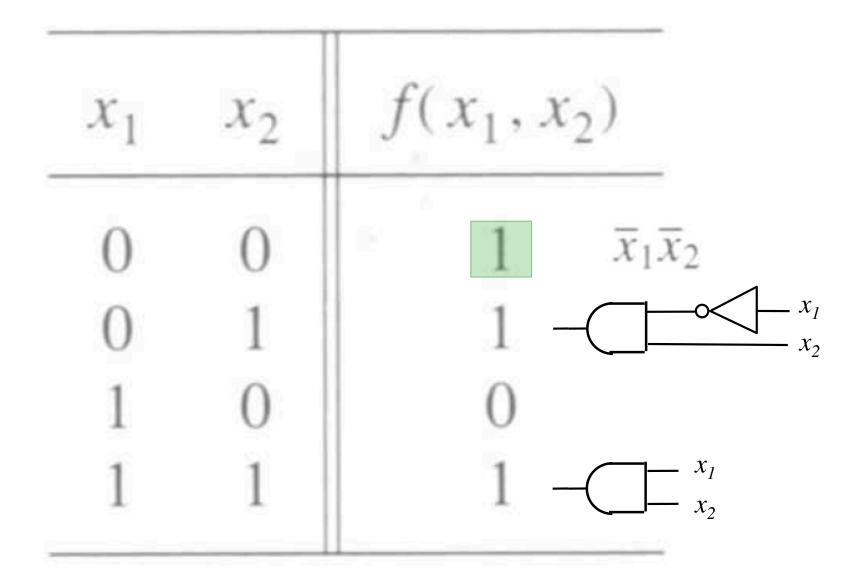



#### What about this row?

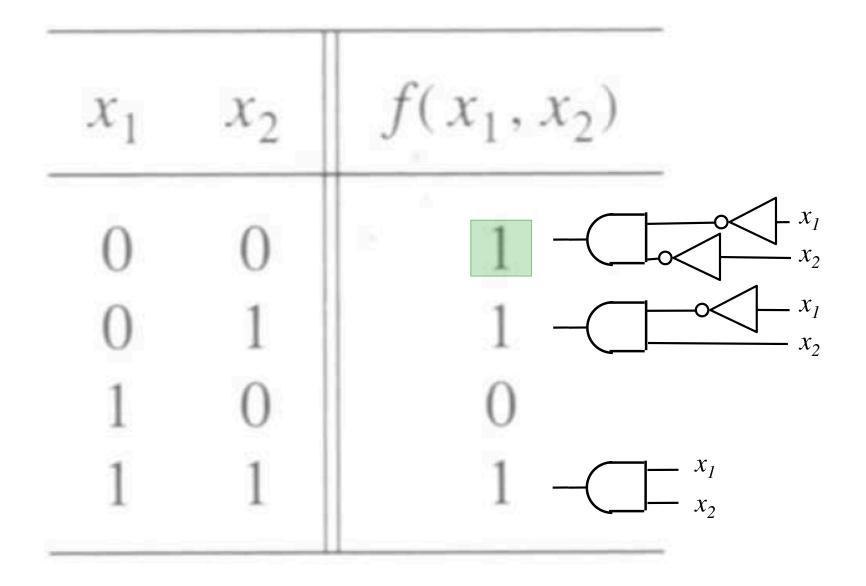



#### What about this row?

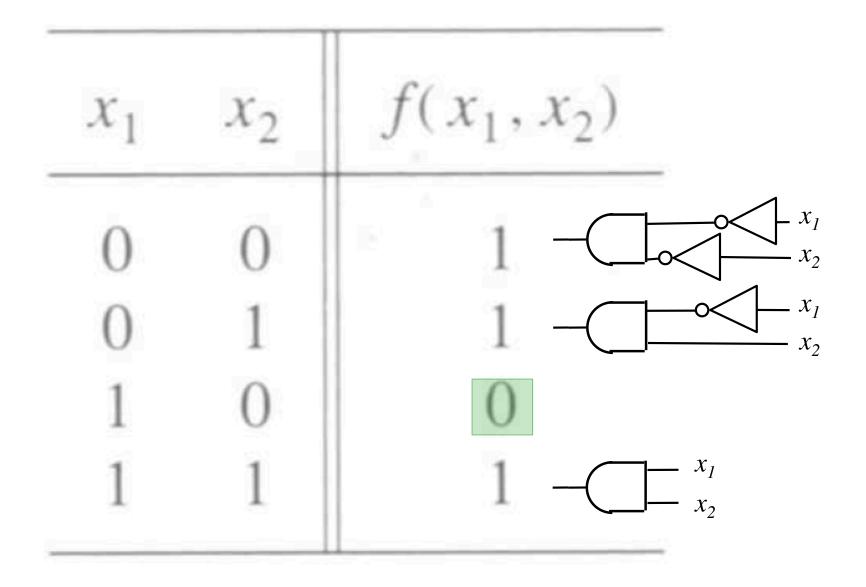



#### What about this row?

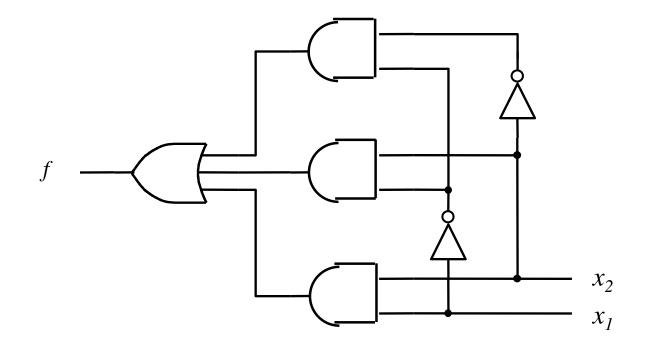



#### What about the first row?

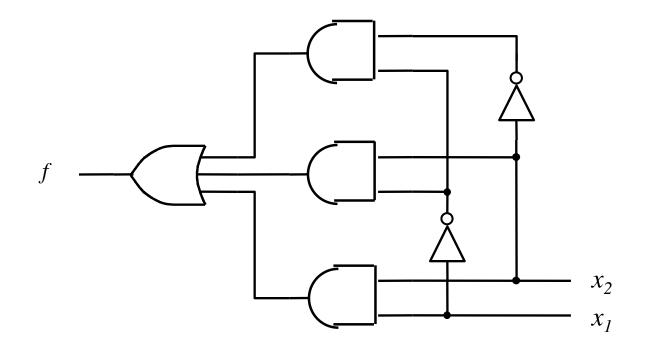



#### What about the first row?

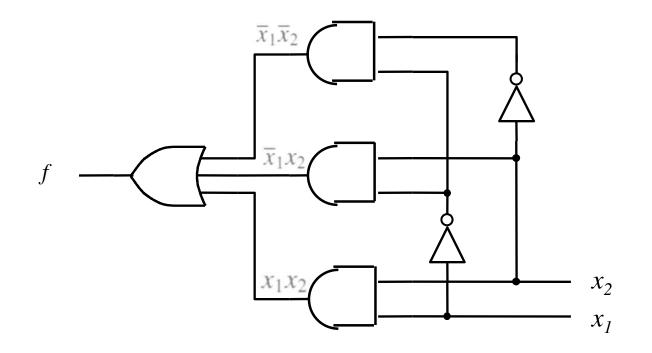



#### What about the first row?

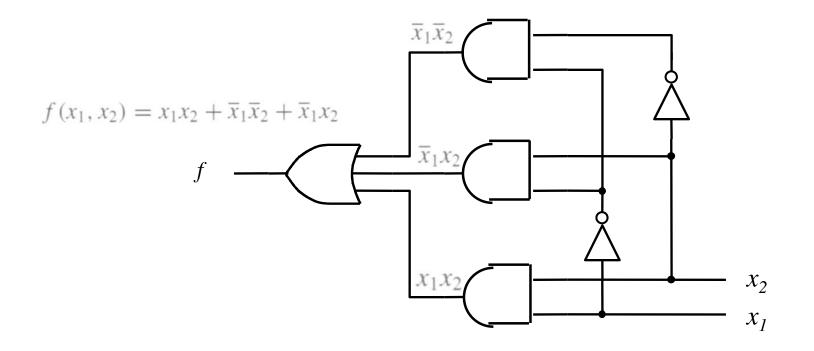



#### Finally, what about the zero?

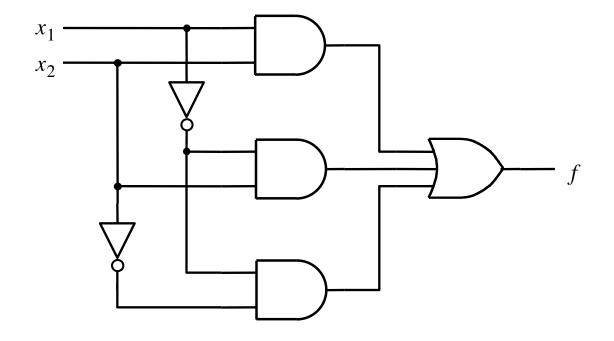



#### Putting it all together




# Let's verify that this circuit implements correctly the target truth table




#### Putting it all together

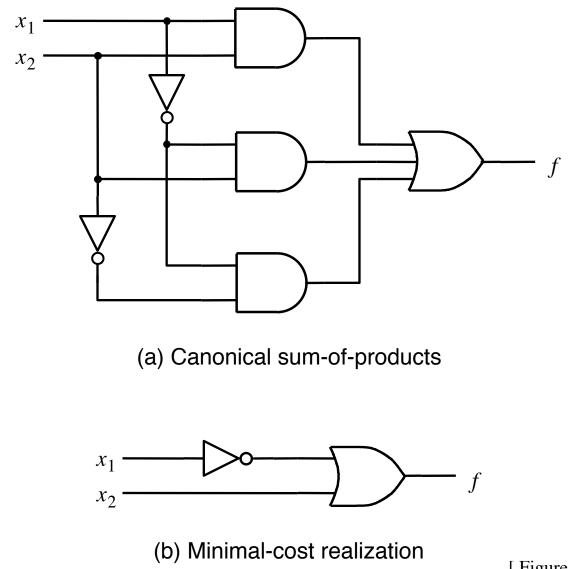


#### Putting it all together



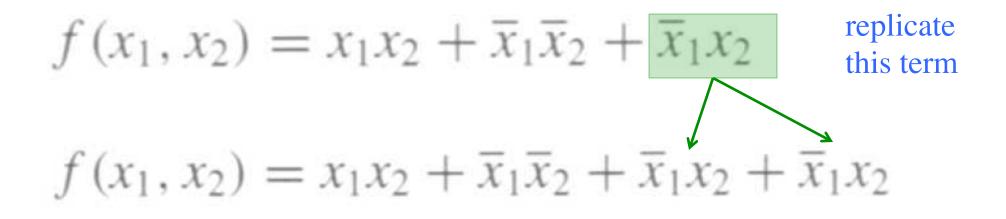
#### **Canonical Sum-Of-Products (SOP)**




# $f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2$

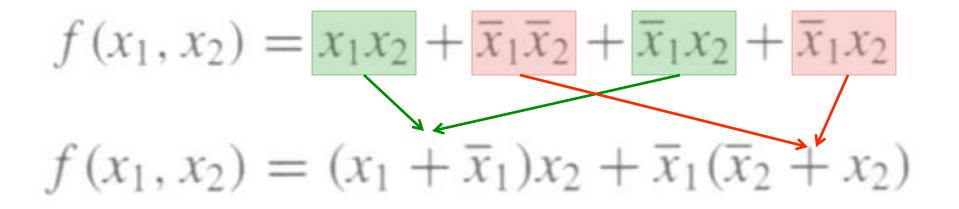
[Figure 2.20a from the textbook]

# **Summary of This Procedure**


- Get the truth table of the function
- Form a product term (AND gate) for each row of the table for which the function is 1
- Each product term contains all input variables
- In each row, if  $x_i = 1$  enter it at  $x_i$ , otherwise use  $\overline{x_i}$
- Sum all of these products (OR gate) to get the function

#### Two implementations for the same function




[Figure 2.20 from the textbook]

 $f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2$ 



 $f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2$ 

group these terms



$$f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2$$

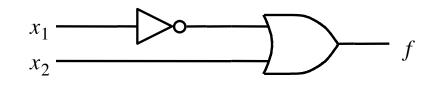
$$f(x_1, x_2) = x_1 x_2 + \bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + \bar{x}_1 x_2$$
  
These two terms are trivially equal to 1
$$f(x_1, x_2) = (x_1 + \bar{x}_1) x_2 + \bar{x}_1 (\bar{x}_2 + x_2)$$

$$f(x_1, x_2) = 1 \cdot x_2 + \overline{x}_1 \cdot 1$$

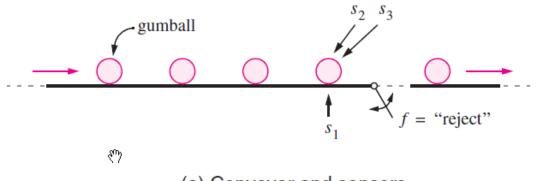
 $f(x_1, x_2) = x_1x_2 + \overline{x}_1\overline{x}_2 + \overline{x}_1x_2$ 

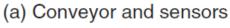
 $f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + \overline{x}_1 x_2$ 

 $f(x_1, x_2) = (x_1 + \overline{x}_1)x_2 + \overline{x}_1(\overline{x}_2 + x_2)$ 


Drop the 1's

 $f(x_1, x_2) = 1 \cdot x_2 + \bar{x}_1 \cdot 1$ 


 $f(x_1, x_2) = x_2 + \overline{x}_1$ 


#### **Minimal-cost realization**

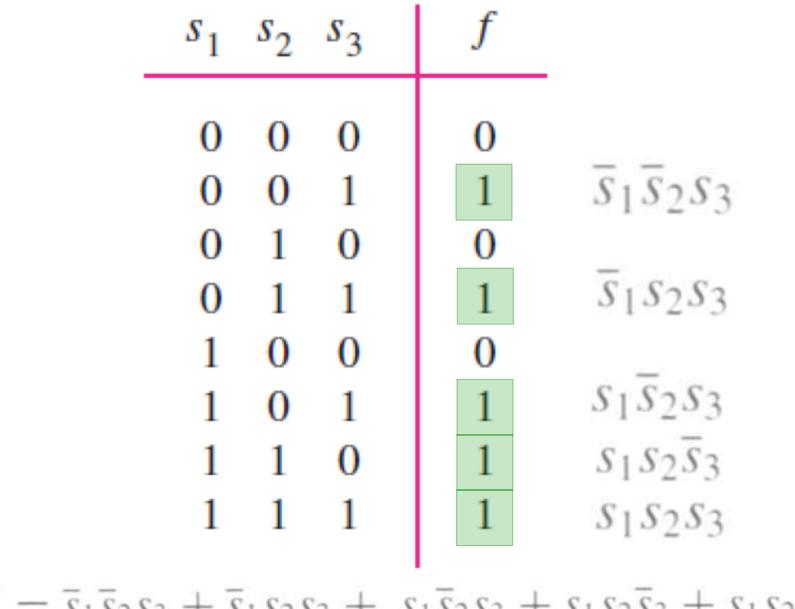
 $f(x_1, x_2) = x_2 + \overline{x}_1$ 



[Figure 2.20b from the textbook]






| <i>s</i> <sub>1</sub> | $s_2$ | <i>s</i> <sub>3</sub> | f |
|-----------------------|-------|-----------------------|---|
|                       | 0     | 0                     | 0 |
| 0                     | 0     | 0                     | 0 |
| 0                     | 0     | 1                     | 1 |
| 0                     | 1     | 0                     | 0 |
| 0                     | 1     | 1                     | 1 |
| 1                     | 0     | 0                     | 0 |
| 1                     | 0     | 1                     | 1 |
| 1                     | 1     | 0                     | 1 |
| 1                     | 1     | 1                     | 1 |
|                       |       |                       | I |

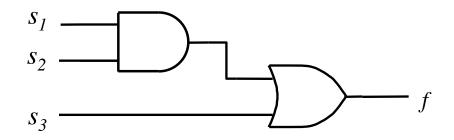
(b) Truth table

| $s_1$ | <i>s</i> <sub>2</sub> | <i>s</i> <sub>3</sub> | f |
|-------|-----------------------|-----------------------|---|
| -     | -                     |                       |   |
| 0     | 0                     | 0                     | 0 |
| 0     | 0                     | 1                     | 1 |
| 0     | 1                     | 0                     | 0 |
| 0     | 1                     | 1                     | 1 |
| 1     | 0                     | 0                     | 0 |
| 1     | 0                     | 1                     | 1 |
| 1     | 1                     | 0                     | 1 |
| 1     | 1                     | 1                     | 1 |
|       |                       |                       |   |

| $s_1$ | <i>s</i> <sub>2</sub> | <i>s</i> <sub>3</sub> | f |
|-------|-----------------------|-----------------------|---|
| 0     | 0                     | 0                     |   |
| 0     | 0                     | 0                     | 0 |
| 0     | 0                     | 1                     | 1 |
| 0     | 1                     | 0                     | 0 |
| 0     | 1                     | 1                     | 1 |
| 1     | 0                     | 0                     | 0 |
| 1     | 0                     | 1                     | 1 |
| 1     | 1                     | 0                     | 1 |
| 1     | 1                     | 1                     | 1 |
|       |                       |                       |   |

| $s_1 \ s_2 \ s_3$                                    | f                                    |                                                                                                                                                                                                                     |
|------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0<br>1<br>0<br>1<br>0<br>1<br>1<br>1 | $\overline{s}_{1}\overline{s}_{2}s_{3}$<br>$\overline{s}_{1}\overline{s}_{2}s_{3}$<br>$s_{1}\overline{s}_{2}\overline{s}_{3}$<br>$s_{1}\overline{s}_{2}\overline{s}_{3}$<br>$s_{1}\overline{s}_{2}\overline{s}_{3}$ |




 $f = \bar{s}_1 \bar{s}_2 s_3 + \bar{s}_1 s_2 s_3 + s_1 \bar{s}_2 s_3 + s_1 s_2 \bar{s}_3 + s_1 s_2 \bar{s}_3 + s_1 s_2 \bar{s}_3$ 

# Let's look at another problem (minimization)

- $f = \overline{s_1}\overline{s_2}s_3 + \overline{s_1}s_2s_3 + s_1\overline{s_2}s_3 + s_1s_2s_3 + s_1s_2\overline{s_3} + s_1s_2\overline{s_3} + s_1s_2s_3$ =  $\overline{s_1}s_3(\overline{s_2} + s_2) + s_1s_3(\overline{s_2} + s_2) + s_1s_2(\overline{s_3} + s_3)$ 
  - $= \overline{s}_1 s_3 + s_1 s_3 + s_1 s_2$
  - $= s_3 + s_1 s_2$

# Let's look at another problem (minimization)

- $f = \bar{s}_1 \bar{s}_2 s_3 + \bar{s}_1 s_2 s_3 + s_1 \bar{s}_2 s_3 + s_1 s_2 s_3 + s_1 s_2 \bar{s}_3 + s_1 s_2 \bar{s}_3$ =  $\bar{s}_1 s_3 (\bar{s}_2 + s_2) + s_1 s_3 (\bar{s}_2 + s_2) + s_1 s_2 (\bar{s}_3 + s_3)$ =  $\bar{s}_1 s_3 + s_1 s_3 + s_1 s_2$ 
  - $= s_3 + s_1 s_2$



#### **Minterms and Maxterms**

| Row<br>number                              | $x_1$                                         | $x_2$                                      | Minterm                                                                                                                                        | Maxterm                                                                                                                                     |
|--------------------------------------------|-----------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$ | $egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$ | $egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$ | $ \begin{vmatrix} m_0 = \overline{x}_1 \overline{x}_2 \\ m_1 = \overline{x}_1 x_2 \\ m_2 = x_1 \overline{x}_2 \\ m_3 = x_1 x_2 \end{vmatrix} $ | $M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$ |

| Row<br>number                          | $x_1$                                    | $x_2$                                  | Minterm                                                                                                                                        | $f(x_1, x_2)$                              |
|----------------------------------------|------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| $egin{array}{c} 0 \ 1 \ 2 \end{array}$ | $egin{array}{c} 0 \\ 0 \\ 1 \end{array}$ | $egin{array}{c} 0 \ 1 \ 0 \end{array}$ | $ \begin{vmatrix} m_0 = \overline{x}_1 \overline{x}_2 \\ m_1 = \overline{x}_1 x_2 \\ m_2 = x_1 \overline{x}_2 \\ m_3 = x_1 x_2 \end{vmatrix} $ | $egin{array}{ccc} 1 \\ 1 \\ 0 \end{array}$ |
| 3                                      | 1                                        | 1                                      | $\parallel m_3 = x_1 x_2$                                                                                                                      | 1                                          |

| Row<br>number                         | $x_1$  | $x_2$                                 | Minterm                                                                                                                                        | $f(x_1, x_2)$                         |
|---------------------------------------|--------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| $\begin{array}{c} 0 \\ 1 \end{array}$ | 0<br>0 | $egin{array}{c} 0 \ 1 \end{array}$    | $ \begin{vmatrix} m_0 = \overline{x}_1 \overline{x}_2 \\ m_1 = \overline{x}_1 x_2 \\ m_2 = x_1 \overline{x}_2 \\ m_3 = x_1 x_2 \end{vmatrix} $ | 1<br>1                                |
| $2 \\ 3$                              | 1<br>1 | $\begin{array}{c} 0 \\ 1 \end{array}$ | $egin{array}{c c} m_2 = x_1 \overline{x_2} \ m_3 = x_1 x_2 \end{array}$                                                                        | $\begin{array}{c} 0 \\ 1 \end{array}$ |

$$f = m_0 \cdot 1 + m_1 \cdot 1 + m_2 \cdot 0 + m_3 \cdot 1$$
  
=  $m_0 + m_1 + m_3$   
=  $\bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + x_1 x_2$ 

| Row<br>number                                   | $x_1$                                           | $x_2$                                      | Maxterm                                                                                                                                     | $f(x_1, x_2)$                           |
|-------------------------------------------------|-------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| $\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$ | $\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$ | $egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$ | $M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$ | $\begin{array}{c}1\\1\\0\\1\end{array}$ |

| Row<br>number                                   | $x_1$                                           | $x_2$                                         | Maxterm | $f(x_1, x_2)$                           |
|-------------------------------------------------|-------------------------------------------------|-----------------------------------------------|---------|-----------------------------------------|
| $\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$ | $\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$ | $egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$ |         | $\begin{array}{c}1\\1\\0\\1\end{array}$ |

| Row<br>number                              | $x_1$       | $x_2$       | Maxterm                                                                                                                                                | $f(x_1, x_2)$ |
|--------------------------------------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| $egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$ | 0<br>0<br>1 | 0<br>1<br>0 | $ \begin{vmatrix} M_0 = x_1 + x_2 \\ M_1 = x_1 + \overline{x_2} \\ M_2 = \overline{x_1} + x_2 \\ M_3 = \overline{x_1} + \overline{x_2} \end{vmatrix} $ | 1<br>1<br>0   |

$$\overline{f}(x_1, x_2) = m_2$$
$$= x_1 \overline{x}_2$$

| Row<br>number                          | $x_1$                                    | $x_2$                                  | Maxterm                                 | $f(x_1, x_2)$                            |
|----------------------------------------|------------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------------|
| $egin{array}{c} 0 \ 1 \ 2 \end{array}$ | $egin{array}{c} 0 \\ 0 \\ 1 \end{array}$ | $egin{array}{c} 0 \ 1 \ 0 \end{array}$ |                                         | $egin{array}{c} 1 \\ 1 \\ 0 \end{array}$ |
| 3                                      | 1                                        | 1                                      | $M_3 = \overline{x_1} + \overline{x_2}$ | 1                                        |

$$\overline{f}(x_1, x_2) = m_2 \qquad \qquad \overline{\overline{f}} = f = \overline{x_1 \overline{x_2}} \\ = x_1 \overline{x_2} \qquad \qquad = \overline{x_1} + x_2$$

| Row<br>number                          | $x_1$                                  | $x_2$                                  | Maxterm                                                                                                                                     | $f(x_1, x_2)$                              |
|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| $egin{array}{c} 0 \ 1 \ 2 \end{array}$ | $egin{array}{c} 0 \ 0 \ 1 \end{array}$ | $egin{array}{c} 0 \ 1 \ 0 \end{array}$ | $M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$ | $\begin{array}{c} 1 \\ 1 \\ 0 \end{array}$ |
| 3                                      | 1                                      | 1                                      | $M_3 = \overline{x_1} + \overline{x_2}$                                                                                                     | $\overset{\circ}{1}$                       |

$$\overline{f}(x_1, x_2) = m_2 \qquad \qquad \overline{\overline{f}} = f = \overline{x_1 \overline{x}_2} \\ = x_1 \overline{x}_2 \qquad \qquad = \overline{x}_1 + x_2$$

$$f = \overline{m}_2 = M_2$$

# Minterms and Maxterms (with three variables)

| Row<br>number                                              | $x_1$                                                                    | $x_2$                                                             | $x_3$                                                                    | Minterm                                                 | Maxterm                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$ | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$ | $egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$ | $egin{array}{ccc} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$ |

#### A three-variable function

| Row<br>number | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $f(x_1, x_2, x_3)$ |
|---------------|-----------------------|-----------------------|-----------------------|--------------------|
| 0             | 0                     | 0                     | 0                     | 0                  |
| 1             | 0                     | 0                     | 1                     | 1                  |
| 2<br>3        | 0                     | 1                     | 0                     | 0                  |
| 3             | 0                     | 1                     | 1                     | 0                  |
| 4             | 1                     | 0                     | 0                     | 1                  |
| 5             | 1                     | 0                     | 1                     | 1                  |
| 6             | 1                     | 1                     | 0                     | 1                  |
| 7             | 1                     | 1                     | 1                     | 0                  |

| Row<br>number | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $f(x_1, x_2, x_3)$ |
|---------------|-----------------------|-----------------------|-----------------------|--------------------|
| 0             | 0                     | 0                     | 0                     | 0                  |
| 1             | 0                     | 0                     | 1                     | 1                  |
| 2<br>3        | 0                     | 1                     | 0                     | 0                  |
| 3             | 0                     | 1                     | 1                     | 0                  |
| 4             | 1                     | 0                     | 0                     | 1                  |
| 5             | 1                     | 0                     | 1                     | 1                  |
| 6             | 1                     | 1                     | 0                     | 1                  |
| 7             | 1                     | 1                     | 1                     | 0                  |

| Row<br>number | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $f(x_1, x_2, x_3)$ |
|---------------|-----------------------|-----------------------|-----------------------|--------------------|
| 0             | 0                     | 0                     | 0                     | 0                  |
| 1             | 0                     | 0                     | 1                     | 1                  |
| 2<br>3        | 0                     | 1                     | 0                     | 0                  |
| 3             | 0                     | 1                     | 1                     | 0                  |
| 4             | 1                     | 0                     | 0                     | 1                  |
| 5             | 1                     | 0                     | 1                     | 1                  |
| 6             | 1                     | 1                     | 0                     | 1                  |
| 7             | 1                     | 1                     | 1                     | 0                  |

 $f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3 + x_1 x_2 \overline{x}_3$ 

| Row<br>number | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $f(x_1, x_2, x_3)$ |
|---------------|-----------------------|-----------------------|-----------------------|--------------------|
| 0             | 0                     | 0                     | 0                     | 0                  |
| 1             | 0                     | 0                     | 1                     | 1                  |
| 2             | 0                     | 1                     | 0                     | 0                  |
| 3             | 0                     | 1                     | 1                     | 0                  |
| 4             | 1                     | 0                     | 0                     | 1                  |
| 5<br>6        | 1                     | 0                     | 1                     | 1                  |
| 6             | 1                     | 1                     | 0                     | 1                  |
| 7             | 1                     | 1                     | 1                     | 0                  |

 $f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3 + x_1 x_2 \overline{x}_3$ 

$$f = (\overline{x}_1 + x_1)\overline{x}_2x_3 + x_1(\overline{x}_2 + x_2)\overline{x}_3$$
$$= 1 \cdot \overline{x}_2x_3 + x_1 \cdot 1 \cdot \overline{x}_3$$
$$= \overline{x}_2x_3 + x_1\overline{x}_3$$

#### A three-variable function

| Row<br>number | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $f(x_1, x_2, x_3)$ |
|---------------|-----------------------|-----------------------|-----------------------|--------------------|
| 0             | 0                     | 0                     | 0                     | 0                  |
| 1             | 0                     | 0                     | 1                     | 1                  |
| 2<br>3        | 0                     | 1                     | 0                     | 0                  |
| 3             | 0                     | 1                     | 1                     | 0                  |
| 4             | 1                     | 0                     | 0                     | 1                  |
| 5             | 1                     | 0                     | 1                     | 1                  |
| 6             | 1                     | 1                     | 0                     | 1                  |
| 7             | 1                     | 1                     | 1                     | 0                  |

| Row<br>number | <i>x</i> <sub>1</sub> | $x_2$ | <i>x</i> <sub>3</sub> | $f(x_1, x_2, x_3)$ |
|---------------|-----------------------|-------|-----------------------|--------------------|
| 0             | 0                     | 0     | 0                     | 0                  |
| 1             | 0                     | 0     | 1                     | 1                  |
| 2             | 0                     | 1     | 0                     | 0                  |
| 2<br>3        | 0                     | 1     | 1                     | 0                  |
| 4             | 1                     | 0     | 0                     | 1                  |
| 5             | 1                     | 0     | 1                     | 1                  |
| 6             | 1                     | 1     | 0                     | 1                  |
| 7             | 1                     | 1     | 1                     | 0                  |

| Row<br>number | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $f(x_1, x_2, x_3)$ |
|---------------|-----------------------|-----------------------|-----------------------|--------------------|
| 0             | 0                     | 0                     | 0                     | 0                  |
| 1             | 0                     | 0                     | 1                     | 1                  |
| 2             | 0                     | 1                     | 0                     | 0                  |
| 3             | 0                     | 1                     | 1                     | 0                  |
| 4             | 1                     | 0                     | 0                     | 1                  |
| 5             | 1                     | 0                     | 1                     | 1                  |
| 6             | 1                     | 1                     | 0                     | 1                  |
| 7             | 1                     | 1                     | 1                     | 0                  |

$$f = m_0 + m_2 + m_3 + m_7$$
  
=  $\overline{m}_0 \cdot \overline{m}_2 \cdot \overline{m}_3 \cdot \overline{m}_7$   
=  $M_0 \cdot M_2 \cdot M_3 \cdot M_7$   
=  $(x_1 + x_2 + x_3)(x_1 + \overline{x}_2 + x_3)(x_1 + \overline{x}_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + \overline{x}_3)$ 

| Row<br>number | <i>x</i> <sub>1</sub> | $x_2$ | <i>x</i> <sub>3</sub> | $f(x_1, x_2, x_3)$ |
|---------------|-----------------------|-------|-----------------------|--------------------|
| 0             | 0                     | 0     | 0                     | 0                  |
| 1             | 0                     | 0     | 1                     | 1                  |
| 2             | 0                     | 1     | 0                     | 0                  |
| 2<br>3        | 0                     | 1     | 1                     | 0                  |
| 4             | 1                     | 0     | 0                     | 1                  |
| 5             | 1                     | 0     | 1                     | 1                  |
| 6             | 1                     | 1     | 0                     | 1                  |
| 7             | 1                     | 1     | 1                     | 0                  |

 $f = ((x_1 + x_3) + x_2)((x_1 + x_3) + \overline{x}_2)(x_1 + (\overline{x}_2 + \overline{x}_3))(\overline{x}_1 + (\overline{x}_2 + \overline{x}_3))$ 

 $f = (x_1 + x_3)(\bar{x}_2 + \bar{x}_3)$ 

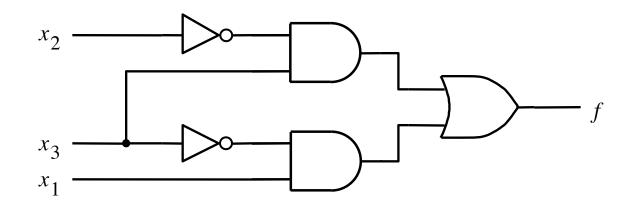
#### **Shorthand Notation**

• Sum-of-Products

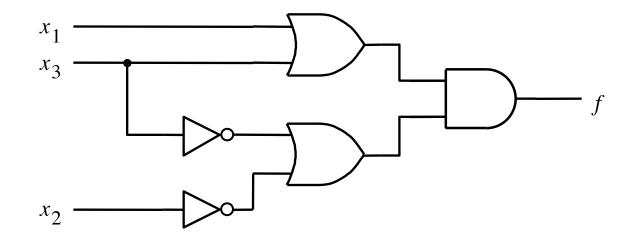
$$f(x_1, x_2, x_3) = \sum (m_1, m_4, m_5, m_6)$$

or

$$f(x_1, x_2, x_3) = \sum m(1, 4, 5, 6)$$


Product-of-sums

$$f(x_1, x_2, x_3) = \Pi(M_0, M_2, M_3, M_7)$$


or

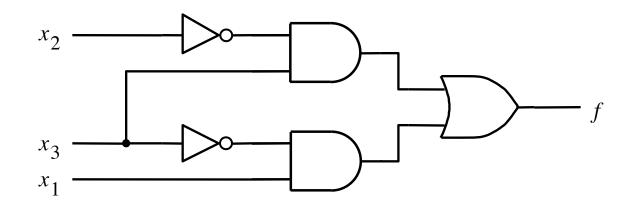
$$f(x_1, x_2, x_3) = \Pi M(0, 2, 3, 7)$$

# Two realizations of that function

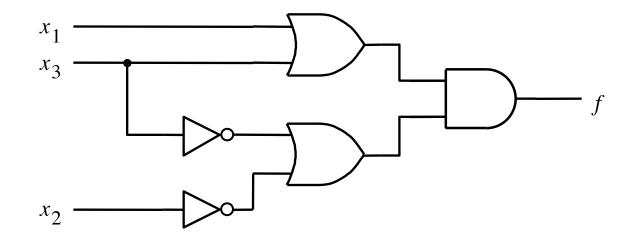


(a) A minimal sum-of-products realization




(b) A minimal product-of-sums realization

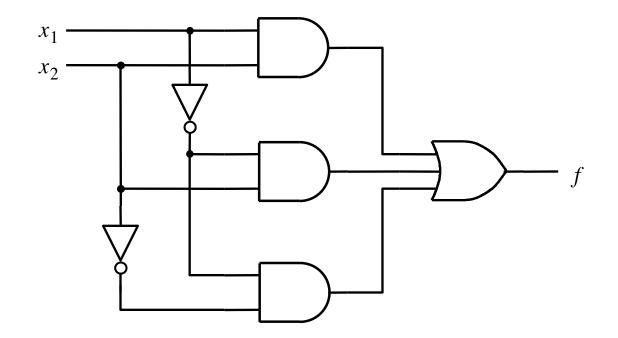
[Figure 2.24 from the textbook]


#### The Cost of a Circuit

- Count all gates
- Count all inputs/wires to the gates

# What is the cost of each circuit?




(a) A minimal sum-of-products realization



(b) A minimal product-of-sums realization

[Figure 2.24 from the textbook]

#### What is the cost of this circuit?



# **Questions?**

# THE END